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Abstract— The quality of semantic image segmentation mod-
els can be affected by external factors such as weather or
daytime. Those factors can lead to safety-critical mistakes. In
this work, we propose a systematic approach to detect and
alleviate such weaknesses of semantic segmentation models.
We systematically evaluate a semantic segmentation model
under different external factors and analyze which factors have
the largest impact on the performance. Then, we collect new
training data under the most harmful external factors and fine-
tune the model. We use the CARLA simulator to obtain driving
data under various environment settings. We deploy a state-of-
the-art semantic segmentation model in two distinct driving
environments. Then, we use the proposed process to detect
which external factors affect model performance the most. We
collect new training data under those factors and fine-tune the
model. The proposed approach outperforms collecting the same
amount of random additional data by up to 10.6%. Our results
show the benefit of using an iterative refinement approach as
opposed to merely collecting larger data sets. Finally, we use
the knowledge about which factors affect performance the most
to train a simple decision tree classifier to predict the model’s
performance given the current external factors. Problematic
environments can be detected at an average accuracy of 87.5%.

I. INTRODUCTION

Robust visual perception is an important challenge in
robotics. In the field of autonomous driving, it is essential
for the autonomous vehicle to know where it can drive
and whether safety-critical objects such as pedestrians are
present. This task can be approached with semantic image
segmentation, where the class membership of each individual
pixel of an image is predicted. Over the last years, models
developed to perform this task have significantly improved
and achieved remarkable performance on challenging bench-
mark data sets, while still being sufficiently lightweight for
use in mobile systems [1].

While most research is focused on optimizing the model
architecture to improve performance, less attention is given
to the validation of a model once it is trained. Despite the
accuracy rates of up to 90 % achieved by state-of-the-art
architectures [2] in driving environments being remarkable,
errors remain inevitable after the first training of a model.
A major reason for safety-critical mistakes of computer
vision algorithms is insufficient awareness of the operational
environment [3]. The operational environment is defined by
external factors such as weather, infrastructure, and other
road participants.
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Fig. 1: Overview of the proposed situation-aware refinement
approach for semantic segmentation.

In this work, we propose a systematic approach for re-
ducing classification errors made due to external factors.
We follow the idea of model refinement as introduced by
Jha et al. [4] and apply it to semantic image segmentation.
Rather than focusing on the model architecture, we keep the
given architecture as it is and propose to iteratively refine
the training data set instead. An overview of the proposed
approach is shown in Figure 1.

We first train a state-of-the-art semantic segmentation
model on driving data collected in the CARLA simulator [5]
as a baseline. We choose CARLA for all our experiments to
easily generate scenarios with the desired different external
factors. Then, we record the model performance in new
driving environments under varying external factors such as
different weather or traffic conditions. Next, we calculate the
correlations between model errors and external factors. After
determining which external factors affect the performance
the most, we obtain additional training data in CARLA
under those specific external factors. Then, we refine our
model by fine-tuning it with the extended training data
set. In experiments in two distinct driving environments
in CARLA, the proposed refinement approach significantly
improves the segmentation results. As a reference approach,
we also collect the same amount of additional data using
random external factors. The systematic refinement approach
outperforms using random data by 7.8 % to 10.6 %.

Finally, we use the correlation between external factors
and model performance for predicting the model perfor-
mance. For this, we train a simple binary decision tree
classifier to classify the environment as challenging or not,
using only the external factors as input. This allows to predict
in which scenes the segmentation model performs the lowest
at an accuracy of 87.5 %.



In summary, our contributions are:
• A comprehensive analysis of the influence of external

factors on the performance of semantic segmentation
models in a simulation environment.

• A systematic and situation-aware approach for the re-
finement of training data sets for semantic segmentation
models that significantly outperforms using random
additional data.

• An approach for leveraging information about the corre-
lation between external factors and model performance
to detect challenging environments.

The rest of this paper is structured as follows. In Section II,
related work is discussed. We introduce our approach for the
refinement of semantic segmentation models in Section III. In
Section IV, we evaluate the proposed refinement approach in
two driving scenarios and present a straightforward model for
predicting the performance of a segmentation model based
on external factors. Section V concludes the paper.

II. RELATED WORK

The task of semantic segmentation has been approached
in a variety of ways over the last years [1], [2], [6], [7].
We select the DeepLabV3+ architecture [1] for semantic
segmentation in this work due to its competitive performance
at reasonable computational costs. However, the proposed
approach is independent of the specific architecture and can
be applied to refine any given model.

Regarding the use of such deep learning methods in safety-
critical applications, Jha et al. [4] argued that traditional
safety monitors are not suitable for a resilient safety archi-
tecture. They pointed out that the assumption of independent
component failures does not hold true for such methods.
They proposed a refinement stage based on the deviations
of a deep learning based model from the ground truth, e.g.,
the classification errors made by the model. However, they
did not further specify how such a refinement could look
like. The proposed approach is a model-independent way of
implementing such a refinement.

In order to obtain the data necessary for the proposed
refinement process, we rely on simulation data. Open
source autonomous driving simulators such as CARLA [5],
LGSVL [8], AirSim [9], or Deepdrive [10] are powerful tools
for acquiring the data needed for refinement. We use CARLA
since there is an active research community and it has been
used for a wide range of tasks in autonomous driving [11]–
[15]. Khan et al. [14] used CARLA to analyze the impact of
individual weather factors on semantic segmentation. They
concluded to add more rainy images to the training data set
in order to increase model robustness. We build on their work
to propose a general framework that considers any kind of
external factor and combination thereof.

The idea of observing mistakes made by a semantic
segmentation model in order to prevent future mistakes has
been used in other applications before. Kuhn et al. [16]
recorded pixel-wise misclassifications made by a semantic
segmentation model and used them to train a pixel-accurate

failure prediction model. This allows to detect or predict [17]
areas with a high predicted failure rate, which can then
be reclassified to correct some of the model’s initial mis-
takes [18]. Instead of correcting a model’s mistakes, the
proposed approach aims to prevent the model from making
such mistakes in the first place by collecting additional data
that allows the model to alleviate its weaknesses.

Context information, such as the external factors inves-
tigated in this work, is an important part of autonomous
driving. Trapp et al. [19] proposed a concept where context
information such as weather conditions and the system state
are used together to predict the performance of a system.
Colwell et al. [20] aimed to improve safety of an autonomous
vehicle by restricting its functionalities whenever the system
is operating outside of its predefined bounds. Instead of
restricting the system, our work aims to refine the system in
order to allow it to handle as many scenarios as possible. In
works such as [21], [22] or [23], future disengagements
of an autonomous system were predicted by monitoring
the input and output of the car. In this work, we show
that external factors can also be used to predict system
performance using a straightforward decision tree classifier.

III. SITUATION-AWARE REFINEMENT

In this section, we present the proposed situation-aware
refinement process. First, we conceptually elaborate the
underlying idea and then discuss each step in more detail.

A. Concept of Refinement

The idea of a refinement stage for deep-learning-
based computer vision modules was first introduced by
Jha et al. [4]. The idea is to constantly monitor and
improve the perception models used for tasks such as se-
mantic segmentation. After training, a model is deployed
and continuously interprets new sensor data. The model’s
predictions then need to be compared to the actual ground
truth. A large deviation of the prediction from the ground
truth indicates a challenging input. The knowledge of which
inputs led to the largest deviation can be used to refine the
model. As a result, systematic faults can be located and
eliminated during the development phase, making the model
more robust and safe. This process needs to be conducted
in an environment where deviations from the ground truth
cannot cause any harm and where the ground truth is always
available. Simulation environments fulfill both requirements
and allow to simulate any weather and driving condition.
Jha et al. [4] did not propose a specific implementation
of such a refinement process. In this work, we present
our approach for realizing a situation-aware refinement for
semantic segmentation.

B. Situation-Aware Refinement

We propose a situation-aware refinement process and
apply it to the task of semantic segmentation. We refer to a
situation as the local driving scenario, e.g., urban or highway,
plus the external factors, such as number of road users
and weather conditions. We use the CARLA simulator [5]
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Fig. 2: Summary of the workflow to determine which external factors need to be addressed by collecting further data in
the situation-aware refinement. We use a DeepLabV3+ model pre-trained on CARLA’s default map and fine-tune on images
captured from a different deployment map. We then replay two new scenarios from that map with altering external factors
to map different external factors to the model performance.

to generate data for varying scenarios and external factors.
This allows a detailed analysis of the situation’s influence
on model performance in the refinement stage. Given a
trained semantic segmentation model, we evaluate it multiple
times in the same driving scenario by varying the external
factors. Then, we evaluate the impact on performance when
factors such as weather or traffic are altered. We do this
by calculating the correlations between model performance
and external factors. After determining which external factors
affect the model the most, we record additional training data
in CARLA under those specific external factors. We then
combine the new data with the initial training data set and
fine-tune the model to reduce the weaknesses determined
in the previous analysis. Next, we discuss the details of
generating the data required for this refinement.

C. Data Generation
The process for generating suitable data for the proposed

situation-aware refinement is summarized in Figure 2. In
detail, the workflow consists of the following parts:

1) Primary Model: The proposed approach requires a
semantic segmentation model that can then be refined. For
this paper, we use the state-of-the-art DeepLabV3+ [1] model
which has shown competitive performance. We pre-train the
model on 5000 images collected in CARLA’s default map
under dynamic weather and traffic conditions.

2) Model Deployment: Next, we deploy the model in a
new CARLA map to simulate real life deployment. For this,
we first fine-tune the semantic segmentation model on 400
images recorded in CARLA’s Town 2 map under dynamic
weather and traffic conditions. Then, we deploy the fine-
tuned segmentation model in two distinct scenarios in Town
2. The two deployment scenarios we used in this work are an
Urban Canyon scenario and a Residential Area environment.
Figure 3 shows the first frame of each scenario captured
in clear conditions and without road users. The vehicle’s
trajectory is a straight line and does not contain any turns.
A log file of the scenarios is stored in order to replay it with
changing external factors as indicated in Figure 2.

Urban Canyon Residential Area

Fig. 3: First frame of each of the two deployment scenarios.

3) Scenario Replay: Next, we perform the key step for
analyzing the correlation between external factors and model
performance. We replay the trajectories driven in the two
deployment scenarios in ten different combinations of exter-
nal factors. The external factors of each replay are given in
Table I. The trajectory logging of CARLA allows to replay
exactly the same trajectory while only the external factors
are varied. This assures that any performance change is due
to the external factors and not due to a different driving
environment.

Replay R Replay Description
0 Clear, Noon, No Road Users
1 Clear, Noon, Road Users
2 Clear, Sunset, Road Users
3 Hard Rain, Noon, Road Users
4 25 % Fog, Morning, Road Users
5 60 % Fog, Morning, Road Users
6 Clear, Night, No Road Users
7 25 % Fog, Night, Road Users
8 60 % Fog, Night, Road Users
9 Wet and Cloudy, Noon, Road Users

TABLE I: Description of the external factors of each replay.
We recorded each replay for both scenarios.



4) Performance Metric: We evaluate the performance of
the segmentation model for a given replay R using the Mean
Average Intersection-over-Union (MAIoU) calculated as

MAIoUR =
1
N
·

N

∑
n=1

AIoUn, (1)

where AIoUn denotes the average Intersection-over-Union
of the n-th image and N is the total number of images in
the replay R. We then calculate the correlation between the
MAIoU of each replay and all external factors.

D. Situation-Aware Refinement

The situation-aware refinement is based on the results of
the correlation of model performance and external factors
from the previous step. A high negative correlation between
the MAIoU and an external factor indicates a weakness
of the model under that factor. Next, we therefore record
additional training data under only the external factors with
the highest negative correlation to model performance. We
always replay the same trajectories driven through the two
deployment scenarios. We thus avoid new semantic content
and only focus on the changing external factors.

With this approach, the training data set is gradually
extended with new samples. In order to avoid over-fitting
to the new data, we only add every third image from the
new samples. Then, the semantic segmentation model is fine-
tuned with the extended data set.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of the experiments
performed to evaluate the proposed approach.

A. Experimental Setup

We first train a DeepLabV3+ [1] model on 5000 images
from CARLA default map. Then, we deploy the model to
the CARLA map Town 2. For this, we collect 400 images
from Town 2. We fine-tune the pre-trained model with the
400 additional images. We then deploy this baseline model to
the two scenarios shown in Figure 3 and test it under the ten
combinations of different external factors listed in Table I.

B. Correlation Analysis

Next, we evaluate model performance for both scenarios
and for each of the ten replays. Then, we calculate the
correlations between performance and external factors.

1) Urban Canyon Scenario: Figure 4 visualizes the corre-
lation between the external factors available in CARLA and
the MAIoU for each replay. Precipitation and precipitation
deposits, i.e., water puddles on the road, have the highest
negative correlation to the MAIoU. Kahn et al. [14] already
analyzed the influence of rain on image segmentation models
extensively. We therefore instead focus on fog density, num-
ber of vehicles and number of pedestrians since those factors
have the next-highest negative influence on the MAIoU.
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Fig. 4: Correlation of external factors and the MAIoU for
the Urban Canyon scenario. Yellow indicates a positive
correlation and purple indicates a negative correlation.

2) Residential Area: A similar correlation pattern can be
observed for the results in the Residential Area scenario,
shown in Figure 5. Here, fog has the largest negative corre-
lation to the MAIoU. We therefore focus on fog density as
well as the number of road users as harmful external factors
during the following refinement stage.
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Fig. 5: Correlation of external factors and the MAIoU for
the Residential Area scenario. Yellow indicates a positive
correlation and purple indicates a negative correlation.

C. Refined Models

We next replay and record the same driving sequences in
Town 2 four times. We record once with the highest possible
fog density, once with the highest number of road users and
once with both maximum fog and the most pedestrians. As
a reference, we also record the sequences with randomly



varying external factors to investigate the benefits of per-
forming the proposed correlation analysis beforehand. We
use an equal number of daytime and night images in each
recording. Using the four additional recordings, we then train
a total of five refined models.

1) Fog: The Fog model is trained on a fine-tuning data set
with additional samples recorded with the highest possible
fog density in CARLA.

2) Road Users: The Road Users model is trained on
a fine-tuning data set with additional samples where the
number of road users is higher than in the initial data set.

3) Intersection: The Intersection model is trained on a
fine-tuning data set with an intersection of the two harmful
external factors, i.e., both high fog intensity and a high
number of road users in each image.

4) Union: The Union model is trained on a fine-tuning
data set that consists of additional samples with higher fog
intensity as well as additional samples with more road users.

5) Random: The reference Random model is trained on
a fine-tuning data set with additional samples where the
external factors were randomly varied during the replay.

D. Performance Evaluation

We test all five refined models in both the Urban Canyon
and the Residential Area scenario and for all replays listed
in Table I. Figure 6 shows the results for the Urban Canyon.
All refined models perform better than the baseline model.
The Intersection model achieves an MAIoU of 0.40, out-
performing the baseline model by 18.7 % and the Random
model by 10.6 %. Interestingly, for replay 3 (Hard Rain,
Noon, Road Users), the models refined with additional fog
perform better than the randomly refined model, even though
the Random model sees more rainy samples during fine-
tuning. This indicates that fine-tuning with foggy images can
lead to more robustness than fine-tuning with rainy images.

For the Residential Area performance shown in Figure 7,
all refined models outperform the baseline model as well.
The Intersection model refined with images with both more
fog and more road users performs best again, outperforming
the Random model by 7.8 %.
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Fig. 6: MAIoU of all refined models for the Urban Canyon.
Avg refers to the average over all replays. On average, the
Intersection model (turquoise) performs best.
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Fig. 7: MAIoU of all refined models for the Residential Area.
Avg refers to the average over all replays. On average, the
Intersection model (turquoise) performs best.

E. Visualization

In Figure 8, we visualize the segmentation results of the
best performing models and compare them to the ground
truth labels as well as to the unrefined baseline model. The
two left columns show three exemplary images and their
corresponding ground truth labels from the Residential Area
and Urban Canyon scenarios under different external factors.
The third column depicts the results of the baseline model
that was fine-tuned to the new map, but not refined for the
two deployment scenarios. It can be seen that the cars are
largely misclassified. Details such as road lines or traffic
signs are also not detected. The fourth column shows the
output of the refined Intersection model. It visibly detects
cars as well as road lines, parts of the traffic signs and parts
of the vegetation. It also detects at least the outlines of the
pedestrians. In contrast, the Random model largely misses
details such as traffic signs and makes significantly more
errors even with large objects such as cars. This demonstrates
the benefits of using the proposed approach for refinement
instead of simply collecting larger training sets.

F. Further Application

In a safety-critical application such as autonomous driving,
the data gathered during the refinement process can be further
used to predict the model’s performance based on the current
external factors. Following the concept of dynamic safety
management first introduced by Trapp et. al [19], external
factors can be used to predict a system’s performance. For a
proof of concept, we measure the MAIoU of the Intersection
model for another 38 replays in both scenarios and map it
to the external factors. We then divide the replays evenly
into two classes according to their MAIoU. Class 1 denotes
a performance in the lowest 50 %, while class 2 contains
the replays with an MAIoU in the highest 50 %. We then
aim to predict whether the performance for a new replay
is low or high based only on the external factors as input.
For this, we train a binary decision tree classifier with 38
replays, reserving another 10 replays as a test set. The
resulting tree classifies the test set at an average accuracy
of 87.5 %. The tree achieves an F1-score of 0.86 for class 1
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Fig. 8: Visualization of exemplary segmentation results of the baseline, Intersection, and Random model. The raw input
image is shown in the first column. The second column shows the ground truth of the raw images. The third column shows
the baseline model’s predictions. The fourth and fifth columns show the Intersection and Random models’ segmentation
results.

(low performance) and 0.92 for class 2 (high performance).
While this classification task is rather simple, it does indicate
that considering external factors to predict insufficient model
performance is a promising direction.

V. CONCLUSION
In this paper, we proposed a situation-aware refinement

approach for semantic image segmentation. We evaluated a
semantic segmentation model under varying external factors
and calculated the correlation between model performance
and factors such as weather or number of road users. We used
the information from the correlation analysis to collect new
data to fine-tune the model with. We evaluated the proposed
approach in two scenarios in the CARLA simulator. The
presence of fog and road users was identified to cause a
decrease in model performance. The systematic refinement
process with data collected under those factors outperformed
using random additional data by 7.8 % to 10.6 % on average.
This demonstrates the advantage of a systematic refinement
process over the conventional approach of simply collecting
more, but random data to improve model performance. The
knowledge obtained in the refinement process can also be
leveraged to predict the general performance of the model
based only on the external factors at an accuracy of 87.5 %
using a decision tree classifier.

The main limitation of the proposed approach is the use
of simulation data. The benefits of the refinement in the
real world still need to be investigated. However, collecting
just the most useful data is even more important with real-
world data due to the expensive manual labeling process. The
proposed approach therefore has the potential of reducing
costs in addition to improving model performance.

For future work, an interesting direction would be to
account for more external factors at a finer granularity. This
could allow to more accurately assess the weaknesses of a
model, which in turn can allow a more efficient situation-
aware refinement for semantic segmentation.
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