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ABSTRACT 
A ship’s energy performance model describing the 

relationship between ship speed and energy consumption is an 
essential component in her voyage optimization system, since it 
is required to evaluate the energy costs associated with different 
voyage plannings. For energy-efficient voyage planning, such a 
ship model estimates the corresponding energy consumption of 
each feasible route/sub-route based on her sailing speeds and 
encountering environmental conditions. Thus, the reliability of a 
ship’s energy performance model is expected to have a great 
influence on the ship’s voyage optimization results. Various 
approaches have been widely researched to construct the ship 
performance model, such as empirical white-box models based 
on experimental tests and physical knowledge, data-driven 
black-box models using machine learning methods, and gray-
box models combining the above two approaches, etc. In 
addition, various energy cost functions are used for the ship 
voyage optimizations, such as the total power or fuel 
consumption, etc. The objective of this study is to investigate the 
sensitivity of ship voyage optimizations due to different energy 
cost functions from different modeling techniques. A chemical 
tanker with full-scale measurement is used in the case study to 
study the sensitivity of voyage optimizations in terms of energy 
efficiency. Some insights into employing different energy cost 
functions and models are discussed in detail to provide good 
recommendation practices for optimal voyage planning. 

Keywords: Energy efficiency, machine learning, ship 
performance model, voyage optimization  

1. INTRODUCTION
There is an increasing awareness in the shipping industry of

the significance of reducing energy consumption. Besides saving 
costs for individual business companies, reducing energy 
consumption in shipping is crucial for combating climate 
change. Voyage optimization is a key factor in enhancing 
operational energy efficiency[23]. It involves comprehensive 
approaches that consider various factors such as weather 
conditions, vessel performance, and different optimization 
objectives, such as operation safety, efficiency, and accurate 

estimated time of arrival (ETA). The ship performance model 
combines and evaluates these factors for specific objectives, 
offering evaluations for optimization cost functions, and 
supporting the decision-making. Thus, it is essential to integrate 
an accurate ship performance model that can provide robust 
assessments into voyage optimization for diverse sea conditions. 
 For energy-efficient ship voyage planning, optimization 
objectives can be defined in different ways, such as minimizing 
power[22], fuel[16], emissions[14, 23], or the overall 
economic/operational cost[2]. To evaluate the corresponding 
cost and identify the optimum solution, cost functions are 
essential to provide a quantitative measure of the performance or 
effectiveness of potential voyages. And based on the different 
objectives, the ship model is formulated and integrated into the 
cost function, to provide the relationship between the 
environmental conditions with factors that are of interest [25]. 
However, depending on the different optimization objectives, as 
well as diverse approaches to develop the ship performance 
model, the optimization process can vary and different impacts 
on the outcome can also be observed. Therefore, how these 
factors can influence the result, and their sensitivity to the 
optimization results is a topic worthy of exploration. In this 
paper, this topic is investigated focusing on how cost functions 
impact the optimization processes, and the sensitivity these 
factors exhibit to the optimization results. 

For ship performance modeling, many approaches have 
been developed and explored. They can generally be divided into 
empirical or semi-empirical formulations, computational fluid 
dynamics (CFD) methods, model testing, and machine learning 
(ML) approaches[6, 7, 10, 19]. Among which, empirical/semi-
empirical techniques are widely used in today’s voyage 
optimization, which are based on fundamental laws of physics 
and prior knowledge that can ensure reliable predictions under 
various conditions. They are cost-effective to develop and have 
good extrapolability beyond the given data. Also, machine 
learning (ML) techniques and Artificial Intelligence (AI) come 
with great possibilities to develop accurate ship performance 
models, allow for reliable energy efficient measures, and reduce 
greenhouse gas (GHG) emissions. Various research and 
commercial developments have produced promising results[1, 8, 
15, 18, 24]. A substantial amount of ship operational data can be 
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gathered through onboard sensors for real-time monitoring[4], 
and ML models can be built upon these measurement data.  

However, the empirical methods can be complicated and 
may generalize complex phenomena with assumptions, which 
may not account for unique or unexpected sea conditions and 
operations. These uncertainties related to traditional physical 
models have been found and acknowledged by the maritime 
industry[4, 20]. And machine learning methods rely on the 
quantity and quality of the full-scale measurement data, and may 
result in unreasonable results for unseen scenarios with less 
satisfying extrapolation capabilities. When integrated into the 
voyage optimization system, there can be uncertainties if these 
characteristics of ship models have different impacts on voyage 
optimization functionality, and lead to different deviated optimal 
outcomes. Further, since the cost function that involves the ship 
model is essential for the optimization process, the sensitivities 
of the different ship models on the voyage optimization should 
also be investigated. 
 In this paper, the impact of the ship performance model on 
energy-efficient voyage optimization is investigated, by 
estimating different energy costs in terms of power and fuel, also 
using AI/ML techniques and theoretically/empirically developed 
models respectively in voyage optimization considering accurate 
ETAs. The introduction to voyage optimization and the 
optimization algorithm used in this study are presented in 
Section 2. Following that, the ship models are integrated into cost 
functions, and these five cost functions based on different 
strategies are presented in Section 3. The ship models' influence 
on voyage planning is validated with a case study ship, and the 
optimization results by employing different ship models will be 
compared in Section 4, followed by conclusions in Section 5.  

2. VOYAGE OPTIMIZATION FOR SHIP OPERATION 
2.1. Overview of energy-efficient voyage optimization  

A general scheme of energy-efficient voyage optimization 
systems for seagoing vessels is presented in Figure 1. A typical 
voyage optimization system requires three major components, 
the weather/metocean conditions, the ship performance model 
within the cost evaluations, and a voyage optimization algorithm 
to effectively execute the voyage optimization process 
complying with specific optimization objectives.  

 

 
FIGURE 1: GENERAL SCHEME OF VOYAGE OPTIMIZATION 

For a given voyage, the sailing area between departure P0 

and destination Pf will be initially discretized into time stages 
and partitioned into a waypoint grid. Each waypoint inside the 
grid is defined as: 
 

𝑷𝑷𝒊𝒊,𝒋𝒋 =  [𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖,𝑗𝑗 , 𝑡𝑡𝑖𝑖,𝑗𝑗]   (1) 
 
The subscript i represents the number of the current time 

stage, and j represents the number of waypoints at the current 
time stage. The edges between the feasible waypoints represent 
the sub-routes, and within each sub-route, the sailing speed can 
be determined based on the required arrival time, or used as a 
control variable to be optimized by the algorithms. This grid can 
be generated either statically or dynamically, based on different 
strategies from various optimization algorithms. 

Weather conditions have a great impact on the overall 
energy cost. Therefore, its voyage optimization often 
incorporates weather-routing problems by considering how 
weather conditions affect fuel consumption. The 
weather/metocean condition 𝑾𝑾 (𝑷𝑷)  based on the waypoint 
variable P can be presented as follows:  
 

𝑾𝑾(𝑷𝑷)  =  [𝑆𝑆 (𝜔𝜔|𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑧𝑧),𝑉𝑉𝑐𝑐 ,𝜃𝜃𝑐𝑐,𝑉𝑉𝑤𝑤 ,𝜃𝜃𝑤𝑤]  (2) 
 
where 𝑆𝑆 (𝜔𝜔|𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧)  represents the encountered waves in 

terms of significant wave height Hs and wave period 𝑇𝑇𝑧𝑧. 𝑉𝑉𝑐𝑐, 𝜃𝜃𝑐𝑐, 
𝑉𝑉𝑤𝑤 , and 𝜃𝜃𝑤𝑤  include the ocean current and wind conditions 
respectively, i.e., the speed V and moving directions 𝜃𝜃.  

Then, this weather influence is evaluated by the ship 
performance model as the energy cost of waypoint 𝑷𝑷𝒊𝒊,𝒋𝒋. That is, 
the ship model in the cost function will estimate the 
corresponding energy cost to reach 𝑷𝑷𝒊𝒊,𝒋𝒋 through the preceding 
sub-route, provided with the waypoint state (e.g., speed), and 
weather forecast with metocean data W(P). The cost function 
𝐶𝐶𝑝𝑝 can be then presented as: 

 
𝐶𝐶𝑝𝑝  =  𝑓𝑓(𝑾𝑾(𝑷𝑷))   (3) 

 
The optimization aims to find the route with the lowest 

accumulative cost of all sub-routes. Thus, based on the cost given 
by the cost function in Eq. (3), the voyage optimization system 
could perform the decision-making to identify the most energy-
efficient route that meets the optimization objective. 

Finally, the optimal route R* is obtained with waypoints in 
a series: 
 

𝑹𝑹∗  =  [𝑷𝑷𝟎𝟎,𝑷𝑷𝟏𝟏,𝒋𝒋𝟏𝟏 , … ,𝑷𝑷𝒊𝒊∗,𝒋𝒋∗ , … ,𝑷𝑷𝒇𝒇]   (4) 
 
However, the sailing area normally contains a substantial 

number of waypoints. For each potential sub-route/waypoint, its 
associated cost is evaluated following environmental conditions, 
depending on individual positions and passing time. This may 
contain unseen situations beyond measurement, thereby 
requiring a robust data processing capability to provide reliable 
and accurate prediction for diverse conditions. Then it will be 
able to provide a solid foundation for the decision-making 
process of the optimization algorithm; otherwise, the 
optimization results will be grounded on inaccurately perceived 
information, which could lead to ineffective planning for the 
actual voyage. In this study, five empirical and ML ship models 
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are presented in the following Section 3, which are based on 
different development methods to provide the relationship 
between sailing speed to corresponding energy consumption for 
the voyage optimization algorithm.  

 
2.2. 3D Dijkstra voyage optimization algorithm 

The voyage optimization algorithm used in this study is the 
three-dimensional Dijkstra algorithm (3DDA)[21]. The Dijkstra 
algorithm[5] is a widely recognized computational algorithm 
used in graph theory for solving the shortest path problem. It has 
become a common approach in the field of computer science 
particularly in network routing and navigation, and stands out for 
its efficiency and accuracy in determining the shortest route 
between a starting point and the destination in a weighted graph, 
with edges representing sub-routes with costs like distance or 
time.  

For energy-efficient sailing, the Dijkstra algorithm is 
utilized to determine the most efficient route for a ship, such as 
in 3DDA. The 3DDA method is a recent and advanced 
implementation of the Dijkstra algorithm specifically extended 
and refined for use in open sea navigation. It involves finding the 
lowest-cost route in coordinates (longitude and latitude), along 
with an optimized speed profile in a waypoint grid that represents 
various potential maritime trajectories.  

 

 
FIGURE 2: SPATIAL WAYPOINT GRID OF 3DDA TO 
DISCRETIZE THE SAILING AREA[21]. 

For a given voyage, to perform the 3DDA method, first, a 
reference route in the middle, shown as the red line in Figure 2, 
needs to be chosen either the great circle route or based on 
experience. Then the sailing area between the departure and 
destination is initialized with discretized time stages, with a 
waypoint grid in the spatial region. Each waypoint is defined as 
P i, j in Eq. (1).  

The control variable 𝑼𝑼(𝑷𝑷) for optimization includes: 
  

𝑼𝑼(𝑷𝑷)  =  [𝑣𝑣,𝜃𝜃]    (5) 
 
where v is the interval sailing speed in the following sub-

route after P, and θ indicates the course angle of the ship. 
Therefore, the 3DDA method effectively carries out voyage 
optimization by considering both position and speed variations. 

 

 
FIGURE 3:THE 3D GRAPH FOR STAGE 1 WAYPOINTS OF 
3DDA METHOD 

The waypoints at adjacent time stages in the spatial grid are 
free to explore their way to the next stage’s waypoints, and they 
will relate to the adjacent predecessors and their successors by 
directed edges, indicating the sub-routes. Meanwhile, to take into 
account the speed variation, which in this study is chosen as in 
the range [0.5v, 1.2v], each waypoint also possesses different 
passing times. Thus, the grid is also expanded to an additional 
time frame. The 3D graph for waypoints in Stage 1, i.e., P1,1 to 
P1,5, in Figure 2, is shown in Figure 3 with connected edges 
representing voyage legs. The passing time varies in a range 
which is determined with a fixed time difference Δt, and Δt is 
chosen as 15 minutes in this study. The overall associated speeds 
should be within [0.5v, 1.2v]. The upcoming spatial stages, i.e., 
P2, j, and the following stages are all expended in this way in the 
time dimension, and the entire 3D graph for the search space can 
then be obtained. 

Each edge/sub-route in this three-dimensional graph is 
weighted with an energy cost as in Eq. (3). The cost function in 
3DDA is defined as: 

 
𝐶𝐶𝑝𝑝  =  𝑓𝑓(𝑼𝑼(𝑷𝑷),𝑾𝑾(𝑷𝑷))    (6) 

 
The formulation of the cost function is directly related to the 

ship performance model, to determine the corresponding engine 
power cost or fuel cost using either empirical or ML techniques, 
based on the optimization control variable U(P) and environment 
states W(P) for each sub-route. The different ship models 
employed and compared in this study will be further presented 
in Section 3. Finally, the grid will be searched by the Dijkstra 
algorithm for the optimal route with the lowest accumulative 
energy cost Cp, composed of discretized sub-routes as Eq. (4), 
along with a corresponding optimal control set of 𝑼𝑼(𝑷𝑷𝒊𝒊,𝒋𝒋).  

The strength of the 3DDA algorithm lies in its ability to 
consider the joint optimization of route and speed by processing 
a vast network of waypoints and routes. Provided that its grid 
resolution is sufficient, it can find the optimal route in the grid 
with robustness while also ensuring arrival punctuality for real 
operations. 

 
2.3. Encountered metocean conditions 

For voyage optimizations, the uncertainties that influence 
the result can generally appear in the weather, cost function (ship 
model), and algorithm optimization capabilities. In this case 
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study, the hindcast weather data are used to avoid the 
uncertainties from the weather, as all encountered MetOcean 
environmental data inputs (wind, wave, and current) that the ship 
performance model demands to estimate power/fuel. Related 
MetOcean parameters are extracted from ECMWF ERA-5 
(2023) dataset for wind and wave, and ocean current data is 
acquired from Copernicus 2023 server. An example of 
encountered waves represented by significant wave height is 
shown in Figure 4. 
 

 
FIGURE 4: CONTOUR PLOT FOR SIGNIFICANT WAVE 
HEIGHTS IN NOVEMBER 2016 FROM ECMWF DATASET 

3. COST FUNCTIONS WITH DIFFERENT SHIP 
PERFORMANCE MODELS  
As outlined in the above voyage optimization procedures, 

the control variables 𝑼𝑼(𝑷𝑷) include the ship’s sailing speed, thus 
the performance model in this study is supposed to predict the 
energy cost for the required v. To develop the ship performance 
model and acquire performance-related factors such as power 
and fuel consumption, the general procedure typically adheres to 
the following sequence, as in Figure 5. First, the hull resistance 
is associated with the ship’s cruising speed, i.e., speed through 
water, and the encountered sea states. The propulsion power can 
then be computed based on the propeller's effective power 
against the resistance, engine configurations, and propeller 
efficiencies. And finally, the fuel consumption is obtained 
through Specific Fuel Oil Consumption (SFOC), representing 
the efficiency of the ship engine.  

 

 
FIGURE 5: SHIP ENERGY CONSUMPTION ESTIMATION 
PROCESS 

To achieve energy-efficient sailing with accurate arrival 
time, the objective of voyage optimization is set as the minimum 

energy consumption along a voyage, and the ETA of voyage 
planning is set the same as the selected case study voyages. The 
differences among different approaches are primarily reflected 
in the construction of cost functions in voyage optimization, 
where the ship performance model is employed. To achieve the 
objective of minimum energy usage, the cost function can either 
be chosen as the minimum engine shaft power, or the minimum 
total fuel consumption. The relationship between engine power 
𝑃𝑃𝑠𝑠 and fuel consumption 𝐹𝐹𝑐𝑐 is as follows: 

 
𝐹𝐹𝑐𝑐  =  𝑃𝑃𝑠𝑠 ×  𝑆𝑆𝐹𝐹𝑆𝑆𝐶𝐶  (7) 

 
The power 𝑃𝑃𝑠𝑠 could be acquired from the ship performance 

model providing the ship's speed-power relationship. SFOC is 
the engine efficiency that can vary under different sailing speeds. 
In the industry, the SFOC curve is calibrated through a series of 
testing and data analyses using Eq. (7). Thus, both the speed-
power relationship and the SFOC coefficient can either be 
obtained using statistical regression based on empirical 
knowledge or using AI/ML models with measurement data. 
Similarly, the empirical SFOC curve can provide the mean value 
of SFOC within the measured time interval. However, there still 
contains large uncertainties/discrepancies of SFOC between 
measured and its theoretical value provided by manufactures, as 
shown in Figure 6. Its accuracy can still be increased to involve 
comprehensive factors under diverse operation conditions.  

 

 
FIGURE 6: MEASURED SFOC VALUE UNDER DIFFERENT 

OPERATION CONDITIONS 

In the voyage optimization, the objective can be chosen to 
either minimize the total resistance of ship 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, engine power 
𝑃𝑃𝑠𝑠 , or the final fuel consumption 𝐹𝐹𝑐𝑐  to achieve the energy 
efficiency. However, from Figure 5, it can be seen that due to the 
hull-propulsion-engine coupling, the efficiencies of the engine 
and propeller are also significant for the final energy cost. And 
if only to consider the single resistance or power, the result can 
be different from considering fuel in the optimization. Similarly, 
SFOC may also change under actual operational conditions, 
which may further lead to discrepancies in fuel calculation and 
deviate voyage optimization. The impact of all these factors can 
be identified, however, how these factors can influence the 
voyage optimization needs to be further investigated.  
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It is worth noting that, the concept of SFOC is not only 
limited to fuel oil, instead, it is a universal metric that can also 
be applied to alternative fuels such as LNG (Liquefied Natural 
Gas), methanol, and ammonia. The principle behind SFOC 
remains the same for these fuels, which reflects the engine's 
capability to transfer the fuel's energy into useful work. Given 
the varying energy densities and combustion properties of LNG, 
methanol, and ammonia compared to conventional fuels, engines 
using these fuels may possess different SFOC values/curves. 
However, the similar estimation process is still applicable.  

Therefore, in this paper, five cost functions are first 
constructed to reflect the different optimization objectives, based 
on different ship performance models as illustrated in Table 1. 
Further, the cost functions are integrated respectively in the 
3DDA voyage optimization method, and their impacts on the 
optimization result are compared in Section 4. 
 
Table 1: DIFFERENT PERFORMANCE MODELS USED FOR 
THE COST FUNCTION 

Model Speed-Power SFOC 
Speed-power empirical Empirical - 
Speed-fuel empirical Empirical Empirical 
Speed-power ML ML - 
Speed-fuel ML ML Empirical 
ML SFOC ML ML 

 
3.1. Speed-power empirical model 

One feasible option to optimize the overall voyage sailing 
cost is to achieve the minimum shaft power, since it is directly 
related to the total work done by the engine. The power 
consumption model is also the easily accessible performance 
model that shipping companies can get from towing tank tests 
during their design stage. The cost function could estimate the 
shaft power based on the given speed. In this part, the presented 
ship performance model is developed based on an empirical 
approach. The workflow of such a speed-to-power model is 
shown in Figure 5.  

The first parameter that should be initially determined is the 
ship's speed through water V. According to the approximation in 
ISO15016[17], the speed through water V can be obtained by the 
speed over ground 𝑉𝑉𝑔𝑔  and ocean current speed 𝑉𝑉𝑐𝑐  using the 
superposition principle: 

 
𝑉𝑉 =  𝑉𝑉𝑔𝑔  +  𝑉𝑉𝑐𝑐    (8) 

 
Then, based on the encountered sea states and the ship’s 

characteristics, the total resistance of the ship 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is derived 
by summing calm water resistance 𝑅𝑅𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶, and added resistances 
of wind 𝑅𝑅𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊 , wave 𝑅𝑅𝑊𝑊𝑇𝑇𝑊𝑊𝑊𝑊 , current 𝑅𝑅𝐶𝐶 , and shallow water 
𝑅𝑅𝑆𝑆, i.e.,  

 
𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  =  𝑅𝑅𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶  +  𝑅𝑅𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊  +  𝑅𝑅𝑊𝑊𝑇𝑇𝑊𝑊𝑊𝑊  +  𝑅𝑅𝐶𝐶  +  𝑅𝑅𝑆𝑆  (9) 

 

The thrust forces from the engine and propellers counteract 
this total resistance 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 to push the ship forward. Therefore, 
the overall shaft power 𝑃𝑃𝑆𝑆 that the engine needs to produce can 
be obtained based on the total resistance 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , using the 
engine’s work efficiency and configurations provided by 
manufacturers. This is a conventional way of ship performance 
estimation. Here, the calm water resistance and all the added 
resistance to influence the ship’s motion are computed 
respectively, based on the work proposed in [11, 12]. And 
finally, the shaft power 𝑃𝑃𝑆𝑆 can be derived as follows: 

 
𝑃𝑃𝑆𝑆  = 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  ×  𝑽𝑽/ 𝜂𝜂  (10) 

 
where 𝜂𝜂  is the efficiency coefficient including the hull 

efficiency, propeller open water efficiency, and engine shaft 
efficiency, calculated based on[9]. For such an empirical 
method, it does not include the uncertainties during sailing in the 
speed-power estimation such as statistical waves and various 
coefficient changes due to fouling, etc. It is hard to present a 
highly precise speed-power relationship using semi-empirical 
and theoretical models, however, it could provide acceptable 
accuracy both in interpolation and extrapolation that include 
situations beyond measurement. Besides, since the 
computational speed is significant for the performance of a 
voyage optimization algorithm, an empirical model would bring 
fewer computation loads, compared with other comprehensive 
methods that are highly accurate, such as advanced machine 
learning models. 

 
3.2. Speed-fuel empirical model 

More practically, the cost function can also be directly 
formulated to optimize the overall fuel cost to achieve energy 
efficiency. Based on Section 3.1, to further determine the fuel 
consumption concerning a given shaft power, Specific Fuel Oil 
Consumption (SFOC) coefficient should be calculated as 
outlined in Eq. (7). SFOC is a critical metric in the maritime 
industry, used to represent the efficiency of a marine engine. It 
represents the amount of fuel consumed by the engine relative to 
its power output over a certain period. Essentially, it measures 
how much fuel is needed to produce a specific amount of power, 
therefore it is a key indicator of marine engine efficiency. Lower 
SFOC indicates a more fuel-efficient engine that generates more 
power with less fuel, leading to reduced operating costs and 
lower emissions. Conversely, higher SFOC values indicate less 
efficient fuel usage, which translates to higher costs and 
increased emissions.  

In this part, the cost function is further formulated to provide 
the fuel cost based on the engine power 𝑃𝑃𝑆𝑆. The theoretical curve 
of SFOC is regressed as a cubic polynomial using measurement 
data of 𝐹𝐹𝑐𝑐  and 𝑃𝑃𝑆𝑆 , and the relationship between the specific 
SFOC based on 𝑃𝑃𝑆𝑆 is described as shown in Figure 7. Combined 
with the empirical speed-to-power ship model introduced in 
Section 3.1, first to get 𝑃𝑃𝑆𝑆, and input it in the regressed 𝑃𝑃𝑆𝑆 – 
SFOC cubic curve to get the corresponding SFOC value, the fuel 
cost Fc can be obtained as presented in Eq. (7). 
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FIGURE 7: REGRESSED EMPIRICAL SFOC CURVE USED IN 

THIS STUDY FOR THE CASE STUDY SHIP 

 
3.3. Speed-power machine learning model 

Current studies and industry advancements have yielded 
promising outcomes in the development of ML models capable 
of predicting ship performance under diverse conditions and 
offering suggestions for more efficient ship operations. Various 
machine learning methods can be implemented in describing the 
speed-power relationship of ships, and different models have 
been developed and compared to investigate the most suitable 
method for ship performance modeling with the least 
discrepancies[13]. It can be found that XGBoost method could 
provide no more than 3% accumulative discrepancy in power 
prediction for more than 10 days of actual sailing, while the other 
methods, i.e., neural network, support vector regression, 
generalized additive model, and statistic methods (linear and 
polynomial regression) show around 20%-30% discrepancy.  

XGBoost (Extreme Gradient Boosting) is an advanced and 
efficient implementation of gradient boosting, a machine 
learning technique used for regression and classification 
problems[3]. It has gained popularity due to both its performance 
and speed in data modeling and processing. Therefore, the 
XGBoost method is employed in this section as the ML 
technique to develop the speed-power model, and the cost 
function utilizes the XGBoost model to obtain the evaluation of 
engine shaft power as an ML approach, in comparison with the 
empirical approach introduced in Section 3.1. 

For the ship’s shaft power prediction, the prediction output 
y is the measured shaft power 𝑃𝑃𝑠𝑠, and the input features consist 
of all the elements included in variables U(P) and W(P), in 
addition to the ship draft. The dataset is then given into the 
XGBoost method for model development and evaluation. 
Finally, the trained XGBoost model is integrated into the 3DDA 
algorithm to achieve optimized engine power for the voyage 
optimization.  

 
3.4. Speed-fuel machine learning model 

In this part, the cost function is formulated to estimate the 
fuel cost, and the XGBoost speed-power model introduced in 
Section 3.3 is employed to replace the empirical power 
evaluation. The value of the SFOC coefficient is further needed, 
and here it is obtained through the Ps – SFOC cubic regression 
empirical method, same as in Section 3.2. This is for the 
comparison with the machine learning SFOC model that will be 
presented in the following section. 

 
3.5. SFOC machine learning model 

Several factors can influence an engine's actual SFOC, 
including its type and design, operating conditions, and 
maintenance practices. For a specific marine diesel engine, its 
SFOC is significantly affected by the engine operation/setting 
parameters and its interactions with ship resistance/propulsion 
systems. Moreover, the actual operating conditions often differ 
from the ideal or test conditions under which the theoretical 
SFOC is determined which leads to deviations from the reference 
values. Factors such as load variations, sea state, hull condition 
(such as fouling, mechanical wear, and maintenance), and 
ambient temperature can all influence the actual engine 
performance, especially as operational time proceeds.  

For the performance model, SFOC is one of the significant 
elements that the estimation of fuel consumption depends on. If 
the value of SFOC fails to reflect the actual operation's real 
value, the voyage optimization's decision can also lead to great 
deviations. It not only causes sub-optimal voyage optimization 
such as consuming more fuel than expected, but also can make 
the ship not capable of following the scheduled ETA, since the 
planned power/fuel is based on an inaccurate estimation. 
Moreover, when ships are sailing in a dynamic marine 
environment, the variation of ship resistance and propulsion 
efficiency can lead to continuous adjustment of marine engine 
settings to keep ships’ pre-defined navigation patterns. The 
combination of dynamic sailing marine environments and engine 
setting variations may cause actual engine SFOC to differ 
significantly from the provided SFOC curve. These differences 
could further lead to deviations in sailings, which may 
continuously accumulate as the voyage proceeds. 

In this part, a data driven SFOC model is established by 
machine learning techniques. The impact of more accurate 
SFOC machine learning models in comparison with empirical 
SFOC curves given in Section 3.2, is briefly studied by 
demonstrating their application to evaluate a ship’s energy 
performance along her actual voyages.  

4. COMPARISON OF SHIP MODELS’ IMPACT ON 
VOYAGE OPTIMIZATION 
In this study, the sensitivity of the optimization result to 

different cost functions including ship models, is investigated 
using a case study ship along with her actual voyages. The case 
study ship is presented in Section 4.1, and the optimization 
results, due the characteristics of voyages in different directions, 
are compared in terms of westbound and eastbound voyages in 
Section 4.2 and Section 4.3 respectively.  

 
4.1. Case study ship 

A chemical tanker with full-scale measurement is used in 
this case study, with main particulars given in Table 2. A 
conventional weather routing system was installed on the ship to 
guide the voyage planning. Combined with the ship master’s 
experience, the actual sailing routes are supposed to be more 
efficient than ordinary voyage planning systems. Four voyages 
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of the actual ship measured at North Atlantic in 2015 and 2016, 
including westbound and eastbound, during winter and summer, 
are selected as the case study voyages for result comparison.  

 
Table 2: PRINCIPAL PARTICULARS OF THE CHEMICAL 
TANKER SHIP 

Length Loa 178.4 m Design draught 10.98 m 
Length Lpp 174.8 m Block coefficient 0.8005 
Beam B 32.2 m Deadweight 50752 t 
Depth  17.0 m   

 

 
(a) Voyage 1 

 
(b) Voyage 2 

 
(c) Voyage 3 

FIGURE 8: THE ACCUMULATED PROPULSION POWER 
DIFFERENCE BY THE DIFFERENT MACHINE LEARNING 
ALGORITHMS IN[13]. 

Ship performance models built by different methods as 
listed in Table 1 are employed in the cost function, and ML 
models developed by XGBoost method are chosen and 
developed for the result comparison with the traditional 
empirical models. As shown in Figure 8, it can be seen that the 
ML method XGBoost can present considerably low prediction 
accumulative errors in more than 150-hour voyage sailings for 
three typical voyages. Besides, it also shows the best 
performance prediction compared to other ML methods. Thus, 

the XGBoost model is chosen as the ML model in this case study. 
Based on these models, five different cost functions are 
constructed for the voyage optimization algorithm, to minimize 
the shaft power from the engine, and the fuel consumption 
respectively. 

In addition, the cost functions are integrated into the recently 
developed algorithm 3DDA method. To deploy the 3DDA, its 
grid has a great impact on the optimization result and needs to be 
configured for initialization. For the four voyages, the grid of 
3DDA is specified based on the actual ETA and sailing ranges. 
And for each of the voyages, the grid is kept the same to compare 
only the effect of changing the cost functions. Meanwhile, the 
actual fuel consumptions of these case study voyages are also 
estimated using the ML ship model based on actual data, to 
provide more accurate fuel estimation and exclude measurement 
errors. 
4.2. Westbound voyage optimization  

Two westbound voyage cases are used in this part for 
optimization validation, with optimized routes presented in 
Figure 9 and Figure 10. The weather changes in both two cases 
are not dramatic, and the highest significant wave heights is no 
more than 4 meters as shown in Figure 11 and Figure 12. These 
two cases present the normal and calm sailing status for ships 
operating in the North Atlantic Sea. The optimization results by 
changing different cost functions are listed in Table 3, where the 
fuel consumption is given both in amount and the reduction 
percentage compared to the actual fuel cost. The actual fuel 
consumption is estimated by the ML ship model to provide the 
most accurate estimation of the actual cost. 
 
Table 3: OPTIMIZATION COMPARISON FOR EMPLOYING 
DIFFERENT SHIP PERFORMANCE MODELS 

Models 
Fuel consumption[ton] 

Voy. 20161108 Voy. 20150721 
Amount % Amount % 

Actual ship 177.9 - 178.5 - 
Speed-power empirical 163.1 8.4 178.0 0.3 
Speed-fuel empirical 162.3 8.8 165.9 7.0 
Speed-power ML 154.6 13.1 151.4 15.2 
Speed-fuel ML 154.3 13.3 151.3 15.2 
ML SFOC 161.3 9.3 161.3 9.6 

 

 
FIGURE 9: OPTIMIZED ROUTES BY DIFFERENT COST 
FUNCTIONS FOR CASE VOYAGE 20161108 
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FIGURE 10: OPTIMIZED ROUTES BY DIFFERENT COST 
FUNCTIONS FOR CASE VOYAGE 20150721 

 
FIGURE 11:SIGNIFICANT WAVE HEIGHT ENCOUNTERED 
ALONG VOYAGE 20161108 

 
FIGURE 12:SIGNIFICANT WAVE HEIGHT ENCOUNTERED 
ALONG VOYAGE 20150721 

From Figure 9 and Figure 10, it can be seen that the actual 
routes for both cases have undergone a well-considered planning 
process. The routes in general do not deviate much from the 
shortest Great Circle route, leading to a relatively short total 
distance, and their encountered weather conditions are also calm. 
Especially for the case Voyage 20161108, the actual route adjusts 
its heading twice to keep sailing in very calm waves. Therefore, 
the actual fuel consumption for both cases is not very high. For 
such calm sailing cases, a fuel reduction of around 5% from 
voyage planning compared with the actual route can be 
considered significant. However, from the result shown in Table 
3, the result of total fuel consumption fluctuates greatly in the 
amount due to the change of the ship model and the cost 
functions.  

Firstly, for fuel savings, the three cost functions by ML 
techniques, i.e., ML speed-power and speed-fuel model, 
including the ML SFOC model, all present a higher reduction for 
both two cases. Specifically, in the summer Voyage 20150721 
where the sea status becomes more varying, the divergences in 

the fuel consumption become more noticeable compared with 
the other very calm sailing case Voyage 20161108. Moreover, to 
compare the difference in optimizing the power and fuel cost, in 
this summer Voyage 20150721, the empirical models also 
present more apparent deviations both from the route and fuel 
cost. The empirical model in speed-power leads to 0.3% fuel 
savings, while the empirical model of speed-fuel shows a result 
of 7.0%. The two ML ship models result closely in both cases, 
contributing up to around 13% and 15% respectively. However, 
when considering the effect of SFOC, the result both changes to 
around 9%.  

For the suggested routes shown in Figure 9 and Figure 10, it 
can be seen that the routes given by the two empirical models, 
i.e., optimizing power and fuel, are diverged and mostly do not 
overlap. Moreover, in Figure 10, the route from the speed-power 
empirical model suggests a noticeable long detour, which 
explains its relatively high fuel cost with only 0.3% savings, 
while choosing fuel as energy cost can lead to 7.0%. It may be 
due to using the power cost as the optimization objective can 
neglect the effect of long-distance and only opt for the lower 
power, thereby leading to local optimizations. This corresponds 
to the encountered Hs during the voyage shown in Figure 12, 
where the speed-power empirical function leads to the lowest 
waves in general compared to others. And similar situation can 
also be observed in the other case Voyage 20161108. 
Optimization results using ML models present closer results in 
both two cases, with similar suggested routes, fuel savings, and 
encountered sea states. In Figure 10, three routes by ML models 
are completely overlapped. However, due to the estimation by 
different ship models, i.e., considering the changes of actual 
SFOC value, the estimation of fuel consumption from ML SFOC 
is updated, therefore leading to different amounts of fuel 
consumption and savings. 

 
4.3. Eastbound voyage optimization  

Two eastbound voyage cases are included in this section. 
Due to the natural environment in the North Atlantic, eastbound 
voyages can bring a higher possibility for ships to come across 
storms. Among these two cases, one winter voyage experienced 
extremely severe weather changes and encountered very harsh 
sea conditions, where the highest Hs reaches more than 9 meters 
as shown in Figure 15. And the other summer voyage is a rather 
normal sailing case that Hs has reached more than 5 meters as in 
Figure 16. Their actual routes, which are shown in Figure 13 and 
Figure 14 can also reflect the situations. The route of the winter 
Voyage 20160229 diverges far away from the Great Circle route 
to adapt to the weather situations. And the route of the summer 
Voyage 20160523 generally follows the Great Circle route, 
mainly opting for the shortest distance sailing. 

For the harsh sea sailings in winter, fuel consumption can 
result in dramatic changes if the voyage planning is inefficient. 
For a normal voyage, it is also considerable if more than 5% of 
fuel usage can be saved. However, the optimization result listed 
in Table 4 can still present considerable differences in fuel 
savings. 
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FIGURE 13: OPTIMIZED ROUTES BY DIFFERENT COST 
FUNCTIONS FOR CASE VOYAGE 20160229 

 
FIGURE 14: OPTIMIZED ROUTES BY DIFFERENT COST 
FUNCTIONS FOR CASE VOYAGE 20160523 

Table 4: OPTIMIZATION COMPARISON FOR EMPLOYING 
DIFFERENT SHIP PERFORMANCE MODELS 

Models 
Fuel consumption[ton] 

Voy. 20160229 Voy. 20160523 
Amount % Amount % 

Actual ship 174.8 - 174.2 - 
Speed-power empirical 152.0 13.0 152.0 12.7 
Speed-fuel empirical 151.8 13.2 150.9 13.4 
Speed-power ML 145.3 16.9 149.4 14.2 
Speed-fuel ML 143.7 17.8 149.2 14.4 
ML SFOC 150.6 13.8 158.8 8.8 

 
In these two eastbound voyages, to compare the difference 

in optimizing the power and fuel cost, the results of fuel savings 
from the two empirical models are rather close, with both around 
13%. However, the differences in routes and encountered 
weather can still be observed. Moreover, the empirical cost 
functions still do not contribute as much as ML cost functions do 
in improving energy efficiency, which is similar to the 
westbound cases in the above sections. Using the ML speed-
power and speed-fuel models provides around 17% and 14% fuel 
reduction respectively for two cases. Although they still stably 
present fuel savings close to each other in these two diverse 
environments sailing cases, their suggested routes and 
encountered environmental conditions are also different, 
especially in the case Voyage 20160229. Meanwhile, it is worth 
noticing that obvious differences are also presented in this case 
when including the SFOC calculation using ML techniques. The 
fuel reduction from the ML SFOC model increases to 13.8%, and 
an entirely different route is also suggested as presented in Figure 
13. Since this case involves more dramatic changes in 
environmental conditions, this change may also cause more 

apparent changes in SFOC value, further leading to more 
different optimization results. On the contrary, in the other case 
Voyage 20160523, the result of ML SFOC does not show 
obvious deviations, and its encountered sea conditions generally 
overlap with the ML speed-fuel model. However, these two 
eastbound voyages both involve greater changes in the 
environmental conditions compared with the above westbound 
cases, and more apparent deviations can also be noticed between 
using the power and fuel cost as the optimization objectives. 
 

 
FIGURE 15:SIGNIFICANT WAVE HEIGHT ENCOUNTERED 
ALONG VOYAGE 20160229 

 
FIGURE 16:SIGNIFICANT WAVE HEIGHT ENCOUNTERED 
ALONG VOYAGE 20160523 

5. CONCLUSION 
Voyage optimization is an essential means of achieving 

energy-efficient navigation, which is sensitive to the energy cost 
function to support its decision-making. In this study, five cost 
functions are formulated to investigate the impact of different 
energy costs as the optimization objectives on voyage 
optimization results, integrating ship models in different 
approaches. The employed ship models are developed in 
empirical and machine learning approaches, and the cost 
functions are constructed to evaluate the energy cost in terms of 
power and fuel respectively, while also considering the 
variations of the engine efficiency SFOC under different 
operational conditions. A state-of-the-art and well-developed 
three-dimensional Dijkstra (3DDA) method is used as the 
optimization algorithm, and a chemical tanker sailing in the 
North Atlantic with full-scale measurement is taken as the case 
study ship for validation of voyage optimization. 

It can be seen that the different capabilities in performance 
predictions of ship models could lead to obvious changes in 
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voyage optimization results, both in terms of route and fuel 
consumption. Firstly, using the ML cost functions in general can 
provide more fuel savings than using the empirical cost 
functions. Meanwhile, the cost functions based on empirical 
models show more substantially varied results, while using ML 
ship models presents more stable fuel savings in diverse sailing 
condition cases. Also, for calm sea sailings, the difference 
between optimizing power and fuel costs can be minor. 
However, when it comes to harsher sea sailing that includes more 
environmental changes, the deviations can become more 
noticeable. In addition, when including the variation in actual 
engine efficiency SFOC, it also shows considerable changes in 
the optimization performance toward energy efficiency, 
especially when environmental changes become more dramatic, 
leading to more varying power changes.  

It can be concluded that the voyage optimization system 
can be quite sensitive to the formulation of the energy cost 
function, as well as integrated ship performance models. An 
inefficient formulation of the ship model can lead to an 
inaccurate energy cost function, which further results in invalid 
voyage planning. Meanwhile, the proper choice of the energy 
cost in terms of power and fuel, as well as the hull-propulsion-
engine coupling effect, e.g., the efficiencies of the engine and 
propeller, are also essential to be considered in voyage 
optimization to achieve more effective planning in real 
operational environments, especially for sailings in more 
dramatically changing sea environment. 

ACKNOWLEDGMENTS 
The authors would like to acknowledge the funding from the 

project AUTOBarge, European Union's EU Framework Program 
for Research and Innovation Horizon 2020 under Grant 
Agreement No. 955768; the Swedish Vinnova project 2021-
02768; the Lighthouse sustainable shipping program. 
 
REFERENCE 
[1] Abebe, M., Shin, Y., Noh, Y., Lee, S., and Lee, I., 2020, 
"Machine learning approaches for ship speed prediction towards 
energy efficient shipping," Applied Sciences, 10(7), p. 2325. 
[2] Akbar, A., Aasen, A. K., Msakni, M. K., Fagerholt, K., 
Lindstad, E., and Meisel, F., 2021, "An economic analysis of 
introducing autonomous ships in a short‐sea liner shipping 
network," International Transactions in Operational Research, 
28(4), pp. 1740-1764. 
[3] Chen, T., and Guestrin, C., "Xgboost: A scalable tree boosting 
system," Proc. Proceedings of the 22nd acm sigkdd international 
conference on knowledge discovery and data mining, pp. 785-
794. 
[4] Dalheim, Ø. Ø., and Steen, S., 2020, "Added resistance and 
speed loss of a ship found using onboard monitoring data," 
Journal of Ship Research, 64(02), pp. 99-117. 
[5] Dijkstra, E., 1959, "A note on two problems in connexion 
with graphs," Numerische Mathematik, 1(1), pp. 269-271. 
[6] Faltinsen, O. M., "Prediction of resistance and propulsion of 
a ship in a seaway," Proc. 13th Symposium on Naval 
Hydrodynamics, Tokyo, pp. 505-529. 

[7] Guang, S., "Mathematical modeling of ship speed-loss due to 
wind and seas," Proc. OCEANS'87, IEEE, pp. 494-499. 
[8] Gupta, P., Rasheed, A., and Steen, S., 2022, "Ship 
performance monitoring using machine-learning," Ocean 
Engineering, 254, p. 111094. 
[9] Holtrop, J., and Mennen, G., 1982, "An approximate power 
prediction method," International Shipbuilding Progress, 
29(335), pp. 166-170. 
[10] Kim, M., Hizir, O., Turan, O., Day, S., and Incecik, A., 2017, 
"Estimation of added resistance and ship speed loss in a seaway," 
Ocean Engineering, 141, pp. 465-476. 
[11] Lang, X., and Mao, W., 2020, "A semi-empirical model for 
ship speed loss prediction at head sea and its validation by full-
scale measurements," Ocean Engineering, 209, p. 107494. 
[12] Lang, X., and Mao, W., 2021, "A practical speed loss 
prediction model at arbitrary wave heading for ship voyage 
optimization," Journal of Marine Science and Application, 20(3), 
pp. 410-425. 
[13] Lang, X., Wu, D., and Mao, W., "Benchmark Study of 
Supervised Machine Learning Methods for a Ship Speed-Power 
Prediction at Sea," Proc. International Conference on Offshore 
Mechanics and Arctic Engineering, American Society of 
Mechanical Engineers, p. V006T006A018. 
[14] Lee, S.-J., Sun, Q., and Meng, Q., 2023, "Vessel weather 
routing subject to sulfur emission regulation," Transportation 
Research Part E: Logistics and Transportation Review, 177, p. 
103235. 
[15] Moreira, L., Vettor, R., and Guedes Soares, C., 2021, 
"Neural network approach for predicting ship speed and fuel 
consumption," Journal of Marine Science and Engineering, 9(2), 
p. 119. 
[16] Sang, Y., Ding, Y., Xu, J., and Sui, C., 2023, "Ship voyage 
optimization based on fuel consumption under various 
operational conditions," Fuel, 352, p. 129086. 
[17] Ships, I., 2015, "marine technology—Guidelines for the 
assessment of speed and power performance by analysis of speed 
trial data," ISO: Geneva, Switzerland. 
[18] Tarelko, W., and Rudzki, K., 2020, "Applying artificial 
neural networks for modelling ship speed and fuel 
consumption," Neural Computing and Applications, 32(23), pp. 
17379-17395. 
[19] Townsin, R., and Kwon, Y., 1983, "Approximate formulae 
for the speed loss due to added resistance in wind and waves." 
[20] Vitali, N., Prpić-Oršić, J., and Soares, C. G., 2020, 
"Coupling voyage and weather data to estimate speed loss of 
container ships in realistic conditions," Ocean Engineering, 210, 
p. 106758. 
[21] Wang, H., Mao, W., and Eriksson, L., 2019, "A Three-
Dimensional Dijkstra's algorithm for multi-objective ship 
voyage optimization," Ocean Engineering, 186, p. 106131. 
[22] Wen, S., Jin, X., Zheng, Y., and Wang, M., 2023, 
"Probabilistic coordination of optimal power management and 
voyage scheduling for all-electric ships," IEEE Transactions on 
Transportation Electrification. 
[23] Yu, H., Fang, Z., Fu, X., Liu, J., and Chen, J., 2021, 
"Literature review on emission control-based ship voyage 

10 Copyright © 2024 by ASME



 

optimization," Transportation Research Part D: Transport and 
Environment, 93, p. 102768. 
[24] Yuan, Z., Liu, J., Zhang, Q., Liu, Y., Yuan, Y., and Li, Z., 
2021, "A practical estimation method of inland ship speed under 

complex and changeful navigation environment," IEEE Access, 
9, pp. 15643-15658. 
[25] Zis, T. P., Psaraftis, H. N., and Ding, L., 2020, "Ship weather 
routing: A taxonomy and survey," Ocean Engineering, 213, p. 
107697. 

 

11 Copyright © 2024 by ASME


	Abstract
	1. Introduction
	2. Voyage optimization for ship operation
	2.1. Overview of energy-efficient voyage optimization
	2.2. 3D Dijkstra voyage optimization algorithm
	2.3. Encountered metocean conditions

	3. Cost functions with different ship performance models
	3.1. Speed-power empirical model
	3.2. Speed-fuel empirical model
	3.3. Speed-power machine learning model
	3.4. Speed-fuel machine learning model
	3.5. SFOC machine learning model

	4. Comparison of ship models’ impact on voyage optimization
	4.1. Case study ship
	4.2. Westbound voyage optimization
	4.3. Eastbound voyage optimization

	5. Conclusion
	Acknowledgments



