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Highly automated driving (HAD) vehicles are complex and safety critical systems. They are deployed in an intricate
environment which undergoes continual changes. Complexity of these systems as well as sensing and understanding
the operational environment results in uncertainties, which needs to be addressed for the safety of HAD vehicles.
Ongoing standardization activities (ISO/PAS 21448) to provide Safety of the Intended Functionality (SOTIF) of
HAD vehicles intend to address these issues.
As part of the SOTIF argumentation, we propose a novel modeling method to represent uncertainty of the system
and the environment as well as the propagation of uncertainty through the system. Some authors classified three
types of uncertainty, namely aleatory, epistemic and ontological for this purpose. In this paper, we provide multiple
plausibility functions of Dempster-Shafer Theory to fully assimilate the representation of ontological uncertainty
along with epistemic and aleatory. We implement our proposed method using a commercial Bayesian Network tool.
We show the application of our method with a perception classification use case.

Keywords: SOTIF, autonomous vehicle safety, safety of the intended functionality, dependability, Dempster-Shafer
Theory, Bayesian networks, Evidential networks

1. Introduction
Safety analysis of highly automated driving
(HAD) vehicles is a major challenge. HAD ve-
hicles operate in an environment that cannot be
specified completely at design time, at least not
at the necessary granularity level, due to inherent
environmental complexity and continual ongoing
changes in the environment. Together, these in-
tricacies constitute open context [Burton et al.
(2020); Chang et al. (2020)]. The open context
nature results in uncertainties originating from the
operational environment (e.g. a pedestrian takes
a random turn not predicted by system percep-
tion), sensing (e.g. charge loses in shift registers
of CCD camera), understanding the environment
(e.g. machine learning algorithm used for classifi-
cation) [Burton et al. (2020); Chang et al. (2020)]
and complexity of the system (e.g. emergent be-
havior [Leveson and Thomas (2013)]). Ongoing
standardization activities [ISO/PAS21448 (2019)]
to provide Safety of the Intended Functionality
(SOTIF) of HAD vehicles corroborate to the exis-

tence of these challenges. The goal of the SOTIF
activity is to identify the performance limitations
and triggering conditions that may lead to poten-
tially hazardous behavior.
Gansch et al. presented a system theoretic ap-
proach of uncertainties, which help to quan-
tify these performance limitation and triggering
conditions. Uncertainties originating from vari-
ous sources are traditionally categorized into two
types [Gansch and Adee (2020)].

(i) Epistemic Uncertainty: lack of knowledge
about the system model and the inexact encod-
ing of physical system to models (Fig. 1)

(ii) Aleatory Uncertainty: randomness of a process
represented by a system model (Fig. 1)

The authors introduced the concept of ontological
uncertainty in addition to the two types mentioned
earlier.

(iii) Ontological Uncertainty: condition of com-
plete ignorance in the model of a relevant
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aspect of the system (Fig. 1)

Consideration of ontological uncertainty as a sep-
arate artifact is valuable for safety analysis of
HAD vehicles, as it requires different means of
representation and mitigation [Gansch and Adee
(2020)]. For HAD vehicles operating in the open
context, this type of uncertainty can never be
completely disregarded over the vehicle lifetime,
e.g. a decade ago eScooters were not imagined
to be part of road traffic. Even though epistemic
and ontological uncertainties originate from lack
of knowledge, a general distinction can be made
between model parameters (epistemic) and model
correctness (ontological) to segregate the two un-
certainties (Fig. 1). In order to represent the
ontological uncertainty in the system model, the
notion of unknown state was introduced [Gansch
and Adee (2020)]. However, the following issues
have not been addressed so far.

• Separate representation of epistemic and on-
tological uncertainty in the outcome of safety
analyses so that relevant steps such as design
modification (model refinement, model redis-
covery etc.) can be duly taken.

• Utilization of uncertainties to support SOTIF
analysis of a system model.

Uncertainty

Aleatory OntologyEpistemic

Fig. 1. Uncertainty categorization: Aleatory uncertainty de-
picts the inherent randomness of the process depicted by the
system model. Epistemic uncertainty represents lack of knowl-
edge about the system model and the inexact representation
of physical system to models while ontological uncertainty
depicts condition of complete ignorance in the model of a
relevant aspect of the system.

To this end, we summarize our contribution as
follows.

• We introduce Extended Evidential Network
(EEN), that represent epistemic, ontological
as well as mixed epistemic and ontological
uncertainties distinctly.

• We demonstrate the application of EEN for
SOTIF analysis.

• We demonstrate and evaluate the applicability
of the proposed method by applying it to a
perception function case study.

• We also demonstrate how EEN can help in
decision making through our case study.

The remainder of the publication is structured as
follows: Sec. 2 summarizes the related work and
provides an overview of DST. Sec. 3 presents the

proposed methodology. Sec. 4 provides the appli-
cation process of EEN for SOTIF. An application
of the proposed methodology on the case study is
shown in Sec. 5. Conclusive remarks on this work
and future directions are provided in Sec. 6.

2. Related Work
In order to incorporate uncertainties in safety
analysis, probabilities traditionally provide the
mathematical structure [Hacking (2006); Bern-
stein and Bernstein (1996); Shafer (1976); Helton
(2011)] while directed acyclic graphs (DAGs), e.g.
Bayesian networks [Pearl (2014)], provide com-
prehensible graphical representations [Simon and
Weber (2009); Liu et al. (2018); Luxhoj (2013);
Cai et al. (2016)]. Use of Bayesian Network (BN)
is an established method for dependability appli-
cations [Weber et al. (2012); Cai et al. (2018)].
BN uses nodes to represent propositions (random
variables), arcs to define direct dependencies be-
tween the linked propositions. The strength of
these dependencies are quantified by conditional
probability values between [0, 1]. The directed
arc runs from parent to child. As depicted in
Fig. 2, X5 is the parent node of X6 with two
functioning states (fail, success), one epistemic
state (fail or success) and one ontological state
(unknown). When a node is a root (no influence),
an a priori probability table is defined. Probability
theory and BN are considered sufficient to rep-
resent aleatory uncertainty [Simon et al. (2007)].
However, sufficiency of probability theory to rep-
resent epistemic uncertainty has been challenged
by some authors [Ferson et al. (2015)].
The Dempster-Shafer Theory (DST) or Evidence
Theory (ET) is a mathematical theory that struc-
tures phenomenon by degree of beliefs (belief
masses) on events or states [Dempster (1968);
Shafer (1976)]. Conceptually, DST can be viewed
as a generalized Bayesian Model [Smets (1993)].
This characteristic increases its applicability on
the safety analyses, where BN algorithms are
used [Simon et al. (2008)]. DST comprises of the
following three attributes.

1. Frame of Discernment Consider the multi-
state analysis outcome with n mutually exclusive
and exhaustive states. The frame of discernment
Ω is the finite set of such elements

Ω = {y1, y2, . . . , yn} (1)

In DST, the basic belief assignment (BBA) is cal-
culated on the power set of frame of discernment.

2Ω = {Ø, {y1}, {y2}, . . . , {yn}, . . . , {y1, y2},
. . . , {y1, . . . , yn}}

(2)

2. Basic Belief Assignment Information on the
outcome states (power set) is assigned by belief
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m(A) with the following properties m : 2Ω →
[0, 1] and

m(Ø) = 0 (3)∑
A∈2Ω

m(A) = 1 (4)

where A is the subset of the power set of frame of
discernment. BBA can be seen as an alternative to
probabilities. In this publication we use the term
BBA and belief mass for DST, EN and EEN and
probabilities for Bayesian Network (BN) parame-
ters. The subsets fulfilling {A ∈ 2Ω : m(A) > 0}
are called focal elements. Full knowledge can
be represented by assigning masses to singleton
sets of Eq. 2, while assigning mass m(Ω) = 1
represents total ignorance [Aguirre et al. (2013)].
Eq. 3 constrains the outcome elements to the
closed world assumption [Reiter (1981)].

3. Belief and Plausibility Measures provide
upper and lower bounds on the BBA in DST with
the following mathematical structures.

bel(B) =
∑

A|A⊆B

m(A) (5)

pl(B) =
∑

A|A∩B 6=Ø

m(A) (6)

where B is the subset of the power set of frame of
discernment. The difference between plausibility
and belief function provides a notion of epistemic
uncertainty [Agarwal et al. (2004); Simon and
Weber (2009); Rakowsky (2007)]. bel(B) can be
seen as sum of BBA of all the subsets of Ω that are
fully in agreement with B, while pl(B) can be re-
garded as sum of BBA of all the subsets of Ω that
are fully or partially in agreement with B [Aguirre
et al. (2013)]. For singleton subsets of frame of
discernment Ω, where BBA and belief functions
are same, plausibility functions can model the
lack of knowledge postulation. However, when
categorized into ontological and epistemic, it be-
comes challenging to comprehend which uncer-
tainty among epistemic and ontological is repre-
sented by the difference of unique plausibility and
belief function.

Evidential Network are also DAGs which rep-
resent uncertainties as randomness (aleatory) and
lack of knowledge (epistemic) [Simon et al.
(2008)]. Instead of probability theory, they incor-
porate evidence theory [Dempster (1968); Shafer
(1976)]. They use nodes to represent random vari-
ables, arcs to define direct dependence between
nodes and conditional belief mass to quantify de-
pendency. When a node is a root, an a priori

belief mass table is defined. Moreover, distinction
is made for leaf node by providing belief and
plausibility measures (Fig. 2). The dashed arrows
signifies the fact that there is no influence involved
in those connection.

3. Proposed Approach for Extended
Uncertainty Representation

In this section, we propose an approach that
extends the representation of uncertainties using
DST by incorporating ontological uncertainty. We
also extend evidential networks to incorporate
both epistemic and ontological uncertainties sepa-
rately through extended evidential network (EEN).
We redefine the DST attributes for our approach as
follows.

3.0.1. 1. Frame of Discernment

Consider the multi-state analysis outcome with
the inclusion of ontological uncertainty through
state u [Gansch and Adee (2020)]. The state u
refers to all those states that may not have been
considered during system design/ analysis. Eq. 1
can be rewritten as

Ω = {y1, y2, . . . , yn, u} (7)

X1

X3 X4

X5

X6

bel PlE
PlO PlEO

X2

X5 X6= Fail
X6= 

Success
X6=Fail or 

Success

X6= 

Unknown

Fail 0.7 0.1 0.15 0.05

Success 0.5 0.3 0.1 0.1

Fail or Success 0.2 0.6 0.2 0

Unknown 0.05 0.05 0.2 0.7

Dependency
Association

Fig. 2. Example of Bayesian network: Directed acyclic
graph with nodes (X1,. . . ,X6) and arcs represented by arrows.
Evidential network adds two additional nodes of belief and
plausibility. Extended evidential network adds further nodes
to represent notion of ontological uncertainty. Exemplary
conditional probability table for X6 given.
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In DST, the BBA is performed on the power set of
frame of discernment.

2Ω = {Ø, {y1}, {y2}, . . . , {yn}, {u}, . . . ,
{y1, y2}, . . . , {y1, . . . , yn, u}}

(8)

We also define three subsets of Eq. 8.

E = {{y1, y2}, {y1, y3}, . . . {y1, yn}, . . . ,
{y2, y3}, . . . {y1, . . . , yn}}

(9)

O = {{u}} (10)

EO = {{y1, u}, {y2, u}, . . . {y1, y2, u}, . . .
{y1, . . . , yn, u}}

(11)

Here Eq. 9, 10 and 11 represent the epistemic,
ontological and mixed epistemic and ontological
uncertainty sets respectively. Mixed epistemic
and ontological set (Eq. 11) includes the outcome
states which are epistemic and ontological uncer-
tain.

3.0.2. 2. Belief and Plausibility Measures

As we discussed in the previous section, belief
measure bel(B) can be viewed as sum of BBA of
all the subsets of Ω that are fully in agreement with
B and do not contribute to uncertainties, hence
belief measure bel (Eq. 6) remains the same in
our proposed approach. We define the following
presumptions about the Eq. 8 before defining plau-
sibility functions.

(1) All singleton subsets are considered exempted
from the uncertainty except u.

(2) Element u is considered as ontological uncer-
tainty (O).

(3) Non-singular subsets not containing u are
considered epistemic uncertainty of the sys-
tem model (E).

(4) Non-singular subsets containing u are consid-
ered mixed ontological and epistemic uncer-
tainty of the system (EO).

Based on the above presumptions and Eq. (9-
11), we define the multiple plausibility functions
to individually characterize uncertainties in the
analysis outcome. {∀B : B ⊂ 2Ω ∧ |B| = 1}

bel(B) =
∑

A|A⊆B

m(A) (12)

plE(B) = bel(B) +
∑

A|A∩B 6=Ø
∧ A∈E

m(A) (13)

plO(B) = bel(B) +
∑

A|A∩B 6=Ø
∧ A∈O

m(A) (14)

plEO(B) = bel(B) +
∑

A|A∩B 6=Ø
∧ A∈EO

m(A) (15)

The method we present here is applicable on the
quantification of plausibility functions of the orig-
inal frame of discernment “Ω” states only. Sep-
arate representation of epistemic and ontological
uncertainty in EEN can assist in choosing the right
improvement measure. For example, model re-
finement (changing model parameters) and model
rediscovery (changing the model altogether) can
be associated to epistemic and ontological un-
certainty, respectively. Mixed epistemic and on-
tological uncertainty may serve the case where
both model refinement and rediscovery require
improvement. In other words, this categorization
in the safety analysis may assist in the improve-
ment measures by indicating the aspect to be im-
proved (e.g. better parameterization of a model or
redesigning a model all together).
Having provided with the approach to discrimi-
nate between epistemic and ontological uncertain-
ties, we now provide the definition of Extended
Evidential Network.

Definition 3.1. Extended Evidential Networks
(EENs) are Directed Acyclic Graphs (DAGs).
They represent uncertainties as randomness
(aleatory), lack of knowledge (epistemic) and
state of complete ignorance (ontological). They
use nodes to represent random variables, arcs
to define direct dependence between nodes and
conditional belief mass to quantify dependency.
When a node is a root, an a priori belief mass
table is defined. Leaf node represents the query
of the network. Moreover, leaf nodes are distinct
as belief and multiple plausibility measures are
provided (Fig. 2).

4. Method Application Process on
SOTIF

As defined in ISO/ PAS 21448, SOTIF analysis
focuses on situational awareness. The situational

Fig. 3. Scenario: A low sun inclination is faced by a front
facing camera, while a pedestrian crosses the road along side a
puddle
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awareness is derived from complex sensors and
processing algorithms, which may not be able
to comprehend all the situations at all times as
termed as functional insufficiencies and perfor-
mance limitation [ISO/PAS21448 (2019)].
A sound understanding of the nominal function in-
cluding its operational environment is essential for
the application of the methodology. The system
function can be decomposed to perception, control
and actuation functions [ISO/PAS21448 (2019)].
We apply the safety analysis method in accor-
dance with the clause 7, clause 8, annex B and
annex D of the SOTIF standard [ISO/PAS21448
(2019)] using the following steps.

(1) Hazardous Behavior: Potential hazardous
behavior caused by the intended functionality
is gathered. This may include but not limited
to the following.

(a) The inability of the function to cor-
rectly comprehend the situation and oper-
ate safely; this also includes functions that
use machine learning algorithms.

(b) Insufficient robustness of the function, sys-
tem, or algorithm with respect to sensor
input variations, heuristics used for fusion,
or diverse environmental conditions.

The hazardous behavior may or may not lead
to a harm.

(2) Scenario Level Triggering Condition: Trig-
gering conditions aggravate the occurrence of
SOTIF hazardous behavior. All those condi-
tions at scenario level that may lead to trig-
gering conditions are listed. This also in-
clude environmental effects and foreseeable
misuse [ISO/PAS21448 (2019)]. Some of the
triggering conditions may include the follow-
ing.

(a) Road/ traffic conditions
(b) Weather conditions
(c) Other triggering conditions

(3) Insufficiencies of specification and perfor-
mance limitation that may contribute to oc-
currence of SOTIF hazardous behavior are
defined at system, sub system and component
level. Some examples for such insufficiencies
and limitations are

(a) System level detection mismatch e.g.
i. The mismatch of radar-based obstacle

and visual (front camera) based obstacle
for AEB system.

(b) Sensor performance limitation e.g.
i. Incomplete perception of the scene

(c) Algorithm accuracy e.g.
i. Insufficiency of the decision algorithm

ii. Insufficient training data

We neither claim nor provide an exhaustive
list of triggering conditions, insufficiencies of
specification and performance limitation.

(4) Extended Evidential Network: An EEN
model is constructed out of the information
from previous steps. The steps further taken
are as follows.
(a) Hierarchal dependency between haz-

ardous behavior, triggering conditions
and insufficiencies of specifications and
performance limitations is established.

(b) A BN is constructed i.e. nodes represent-
ing hazardous behavior, triggering condi-
tion and insufficiencies of specifications
and performance limitations and arcs rep-
resenting the dependency.

(c) Belief masses for root nodes and condi-
tional belief tables (CBT) for intermediate
nodes are assigned to quantify the extent
of dependency.

(d) Belief masses of the leaf node is calcu-
lated by propagation.

(e) bel, plE , plO and plEO functions are
calculated (Eqs. 12-15) for the leaf node
states, thus constructing the EEN.

(5) Uncertainty Calculation: Calculation for
epistemic, ontological and mixed epistemic
and ontological uncertainty is then performed.

UnX = plX − bel (16)

where X represents E, O or OE and Un
represent epistemic, ontological and mixed
epistemic and ontological uncertainty respec-
tively.

(6) Risk & Uncertainty Analysis: Result-
ing model and uncertainties calculated can
be used for SOTIF improvement measures
e.g. decision about design improvement (e.g.
model refinement (epistemic) and model re-
discovery (ontological)), residual risk calcu-
lation and runtime analysis and adaptation.
We provide a brief account on the design
improvement measures examples in the next
section.

5. Scenario Modeling and Case Study
for SOTIF

In order to illustrate our methodology, we consider
a perception function. We take a simple scenario
in which a low inclined sun faces the camera used
for perception. A neural network classifier is used
for classification. A water puddle besides human
who intends to cross the road, can occlude the
camera function resulting in wrong/miss classi-
fication (Fig. 3). We apply the steps from the
previous section.

(1) Hazardous Behavior: In the given scenario,
incorrect perception may lead to unwanted
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Table 1. Example for calculating belief and plausibility functions for perception node
(Fig. 4).

Perception belief plausibility plausibility plausibility
A ⊆ 2Ω bel(A) plE (A) plO(A) plEO(A)

{Human} 0.5051 0.6334 0.5051 0.6698

Table 2. Improvement measures in accordance with ISO/ PAS 21448 based on the
predicted uncertainties

Uncertainty Type SOTIF Improvement Measure

Epistemic (UnE) Improved sensor calibration
Improved computing power
Additional information for better training of the model

Ontological (UnO) New sensors inclusion for sensing
Different model altogether

Mixed (UnEO) Any combination of epistemic and ontological

acceleration or deceleration which in turn can
potentially lead to a harm. Thus perception
is the SOTIF hazardous behavior in this study

Fig. 4. Extended Evidential Network of the scenario shown
in Fig. 3

(Fig. 4). At state level of perception node, we
define the following states.
(a) Human
(b) No human
(c) Unknown object
(d) human or no human
(e) human or no human or unknown object
The frame of discernment of the perception
node contains the states human H , no human
NH and unknown object U and mathemati-
cally represented as follows.

Ω = {H,NH,U} (17)

A frame of discernment with 3 elements re-
sults in 8 combinatorial elements, , three of
which are considered mixed epistemic and
ontological combinatorial states. We define
the set of focal element as

2Ω
focal = {{H}, {NH}, {U}, {H,NH},

{H,NH,U}}
(18)

Moreover, set Eqs. 9-11 for the perception
node states are.

E = {{H,NH}} (19)

O = {{U}} (20)

EO = {{H,NH,U}} (21)

(2) Scenario Level Triggering Condition: Sce-
nario level triggering conditions relevant to
hazardous behavior in the case study are as
follows.
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(a) Low Sun inclination, directly facing in the
camera lens

(b) Clear sky increasing the brightness (de-
creasing contrast)

(c) Highly reflective road surface
(d) Human and puddle proximity

(3) Insufficiencies of specification and perfor-
mance limitation: This study considers cam-
era for situational awareness, hence the only
listed component level insufficiencies of spec-
ification and performance limitation are.
(a) Performance limitation

i. We include occlusion and random
noise of the camera process as the
main factors of sensor performance
limitation

(b) Insufficiencies of the specification
i. Insufficient provision of training data

in which human is in the proximity
of puddle as training example for the
neural network classifier.

(4) Extended Evidential Network: As a first
step towards derivation of EEN, we estab-
lish hierarchal dependencies between haz-
ardous behavior, triggering conditions, insuf-
ficiencies of specification and performance
limitations e.g. the proposition p1 : low
sun inclination may potentially causes
occlusion and sun glare, their strength be-
ing dependent on sun inclination. We then
construct BN with arcs representing the de-
pendencies and nodes representing the haz-
ardous behavior, triggering conditions, insuf-
ficiencies of specification and performance
limitations e.g., the proposition p1 is modeled
as explicit nodes i.e., sun inclination, sun−
glare and occlusion (Fig. 4). We provide
arbitrary values to belief masses and CBTs
to represent the extent of the dependency as
the aim of this study is to demonstrate the ap-
plication of the proposed method. However,
these CBTs can be constructed using different
methods [Perkusich et al. (2013); Nunes et al.
(2018); Chin et al. (2009)]. Moreover, sensor
values and other data streams can be used as
input for root nodes at runtime, thus using
EEN as a safety supervisor at runtime.
In this analysis Perception : Human value
defines the belief on the nominal functional-
ity. The deviation from nominal functionality
(incorrect perception) is quantified by the be-
lief and plausibility functions using Eq. 12-15
(Table. 1).

(5) Uncertainty Calculation: Based on differ-
ence between plausibility and belief functions
(Table 1), we calculate epistemic, ontological
and mixed epistemic and ontological uncer-
tainties categories for the state of interest of
the hazardous behavior node.

(6) Risk & Uncertainty Analysis: Table 1 sum-
marizes the result of uncertainty based safety
analysis that we propose in this publication.
We provide some examples as design im-
provement steps for SOTIF (Table 2) that can
applied based on the calculated uncertainties.
For example, the system modeler may select
improved sensor calibration and training
new model for classification based on the
results, since mixed epistemic and ontological
uncertainty is the most influential for this use
case.

6. Conclusion and Future Work
Providing dependability assessment to safety of
the intended functionality (SOTIF) is an impor-
tant aspect in the overall safety argumentation
of highly automated driving. Uncertainty based
safety analysis provide a promising direction to
provide SOTIF argumentation. We proposed a
novel approach for SOTIF analysis through uncer-
tainty modeling. The proposed method provides
multiple plausibility functions in order to accom-
modate representation of ontological uncertainty
through evidence theory and assists in SOTIF ori-
ented improvement measures to be taken.
The proposed method was supported with an ap-
plication on a use case, in accordance with the
propositions from SOTIF standard. SOTIF ori-
ented improvement measures were also provided,
based on the analysis results.
We believe that EEN can be used as a tool to per-
form runtime reconfiguration of highly automated
driving functions, using the uncertainty values of
EEN provided at runtime. In future, we intend to
assess the applicability of the EENs on runtime
analysis and adaptation of HAD functions, e.g.
adaptive cruise control.
A prodigious problem associated to larger BN (or
EEN) is the exponential growth of conditional
probability tables (CPTs) parameters. We intend
to use expert elicitation based semi automated
techniques for CPT elicitation in future.
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