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Abstract—High-accurate machine learning (ML) image clas-
sifiers cannot guarantee that they will not fail at operation.
Thus, their deployment in safety-critical applications such as
autonomous vehicles is still an open issue. The use of fault
tolerance mechanisms such as safety monitors is a promising
direction to keep the system in a safe state despite errors of
the ML classifier. As the prediction from the ML is the core
information directly impacting safety, many works are focusing
on monitoring the ML model itself. Checking the efficiency of
such monitors in the context of safety-critical applications is thus
a significant challenge. Therefore, this paper aims at establishing
a baseline framework for benchmarking monitors for ML image
classifiers. Furthermore, we propose a framework covering the
entire pipeline, from data generation to evaluation. Our approach
measures monitor performance with a broader set of metrics
than usually proposed in the literature. Moreover, we benchmark
three different monitor approaches in 79 benchmark datasets
containing five categories of out-of-distribution data for image
classifiers: class novelty, noise, anomalies, distributional shifts,
and adversarial attacks. Our results indicate that these monitors
are no more accurate than a random monitor. We also release
the code of all experiments for reproducibility.

Index Terms—machine learning, safety monitoring, bench-
mark, image classifier, experimental results

I. INTRODUCTION

Image classifiers based on machine learning (ML) are core
components for many safety-critical autonomous applications,
like autonomous vehicles. ML models make decisions based
on trained past data. A common way to validate them is by
analyzing the discrepancy between the predicted values and
the ground truth (labels) in a testing activity. If the results
are satisfactory, it goes to production. However, even modern
ML techniques, such as deep learning, can be wrong in their
predictions even with 100% confidence [1]. This situation
may lead to hazardous situations like the whole behavior of
the system may rely on the ML decision. Therefore, it is
now urgent to deploy techniques to increase the confidence
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Fig. 1: System under test composed of ML+SM

in such ML classifiers. Among techniques coming from the
dependability community [2], fault tolerance is a technique
that could be applied to deliver a correct service despite the
occurrence of errors. Safety monitors (SM) keep the system
in a safe state despite hazardous situations [3].

Potentially, these situations may include errors from the ML
model. Many recent works focus on monitors dedicated to the
ML model surveillance. They broadly fall in three types of
monitors: observation of the inputs of the ML model [4], its
outputs [5] or from intermediate layers in case of deep neural
networks (DNN) [6], [7]. However, they are all based on the
exploitation of the training data. Therefore, we refer to them
as data-based monitors compared to safety monitors based on
rules (or safety properties). Similar to uncertainties inherent
to the use of ML, the confidence in such SM is an open issue.

Thus, it is essential to estimate how efficient such monitors
are and if it is possible to include them in safety monitoring.
This estimation should consider all potential situations leading
to an error of the ML and should be based on metrics dedicated
to measuring the monitor efficiency. Therefore, we focus on a
framework for benchmarking such monitors, augmented with
an additional primary mechanism to inhibit the decision in
error detection. As presented in Figure 1, the complete system
under test is composed of an SM that surveil the ML.

Our benchmark adapts and extends current metrics used in
the ML community to estimate the SM detection performance
at runtime, its impact on the system, and the overhead induced
by the use of the monitor. Our main contributions are:

• A new baseline framework for benchmarking SM for ML
classifiers. To the best of our knowledge, this is the first
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work that proposes an initial framework that benchmarks
SM for ML components from different perspectives.

• A comprehensive benchmark experiment containing dif-
ferent data-based SM implementations, datasets, and re-
sults. Our experiments reveal the advantages and draw-
backs of the main modern data-based SM approaches
for image classifiers built with ML. We perform experi-
ments on five challenging and important types of out-of-
distribution data for image classifiers.

This work is organized as follows: in Section II, we provide
background on ML classifiers, threats that may affect their re-
sults, and current safety monitoring approaches. In Section III,
we present an overview of our framework, along with its main
objectives. In Section IV we present our experiments, datasets,
and results of the application of our framework to three ML
monitors. Finally, in Section V, we present our conclusions.

II. BACKGROUND

This work focuses on monitoring ML image classifiers,
especially when exposed to out-of-distribution data that can
threaten their performance at runtime. In the following sub-
sections, we give a brief explanation of these concepts.

A. Image classifiers with ML

An ML classifier is a software component that uses an ML
algorithm for identifying, given an observation, in which class
it belongs [8]. ML classifiers take an input, such as an image
or a vector of numerical values, and outputs categorical values
(classification) according to a category (class) previously seen
during the training process. This component, called the ML
model, is usually validated by analyzing the discrepancy
between the classified values and the ground truth (labels).
If the results are satisfactory, it goes to production. These
classifiers are integrated into many perception pipelines of
autonomous systems. The prediction of the ML is at the very
heart of the safety-critical functions of such systems (e.g.,
collision avoidance, path planning, and so on).

B. Out-of-distribution data

ML models tend to be biased to the training data [9],
resulting in a natural inability of a model to generalize 100%
of time even if all available data could be collected. Beyond
this fundamental model generalization issue, there is another
problem: data incompleteness. That is, rare conditions tend to
be underrepresented since the training data represents a subset
of all real-world possibilities [10]. It means that data represents
the same target classes from training data, but that has different
characteristics, different enough to threaten ML performance.
Such data is known as out-of-the-distribution data (OOD).
In this paper, we consider five types of OOD data that can
threaten an ML model at runtime:

• Novel classes: a scenario where new classes are intro-
duced during runtime. For example, an ML model can
be trained to identify dogs but fails to classify a new dog
type not present in the training data [11].

• Adversarial inputs: a situation when ML fails with high
confidence due to small input modifications [12].

• Distributional shifts: a condition that decreases the ML
performance through time since the training dataset may
differ from the real inputs. Such a situation is also known
as a concept-drift [13]. Examples of distributional shift
include a change in class attributes such as dimension,
physical characteristics, contrast, brightness, and other
pixel-related variations in the image.

• Noise: a possibility to receive deteriorated images due
to small failures in exteroceptive sensors or unexpected
environmental interference.

• Anomalies: a severe failure from exteroceptive sensors
capable of severely corrupt images. However, contrary to
noise, such failures corrupt data so that such images lose
semantic value. It means that whatever the ML decision
is, it can correspond to an inaccuracy. Examples of such
images are black images, images with several shifted
pixels, and so on.

Next, we detail the current approaches for monitoring ML.

C. From SM to ML monitors

Safety monitoring is a well-known dependability technique
already used in embedded systems such as robots or au-
tonomous vehicles. This approach is generally based on a
system model or the environment and on properties they
should guarantee. We will use rule-based monitors for such
approaches (in opposition to data-based monitors presented in
the following sub-section). Some techniques for monitoring
safety components, consider this component as a black-
box [3]. It is possible to apply this approach to systems,
including ML algorithms. However, as they are considered
black-box, the fact that it is an ML-based component has
no real impact on the SM design. For example, safety rules
can be implemented in an SM to verify if a vehicle can
completely stop before reaching an obstacle [14] or to avoid a
collision [15]. In both cases, external (exteroceptive) sensors,
such as distance sensors, are observed along with internal
(proprioceptive) sensors, such as speed, to evaluate if a safety
property is violated. It means that it was possible in these
situations to have a redundant mechanism to monitor the ML.

However, when ML is in charge of image classification, in
most cases, no redundant classification mechanism could be
developed to monitor the ML. Indeed, it is usually impossible
to use external sensors and external software not based on ML
to confirm or invalidate an ML prediction.

One possible direction is then to verify some assertions at
the ML levels, for instance, with the use of model assertions
[16]. This technique is an adaptation of the classical program
assertions to monitor and improve ML models. The idea is
to verify inputs/outputs that indicate when errors may be
occurring in the system. For example, monitoring if an object
flickers in and flickers out in the camera indicates a possible
failure. Even applying these techniques during design and
operation cannot guarantee that a DNN decision is safe. The
reason is that, for some corner cases, ML outputs wrong
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decisions that cannot be verified by inspecting the code logic
or the sensor values and lead to hazards [17].

We can deploy rule-based monitors when redundant obser-
vation sources are applied and safety properties are correctly
expressed. However, monitoring an ML component for vision
is particularly complex to find a redundant source of observa-
tion. Moreover, it is not apparent to express a safety property
at the level of an ML prediction. For these reasons, a current
approach is to develop monitors based on the ML training
data: the data-based monitors.

D. Data-based monitors

This approach is usually based on data instead of using a
system model or specifications provided by the developers.
However, it means that we develop the monitor itself using
the same training data as the ML. We propose to classify such
monitors in three categories: monitors based on ML inputs,
intermediate values, or outputs:

1) Monitoring DNN inputs: An example of this approach
is to adversarially train an ML model to reconstruct a noisy
image to an image similar to a previous known class [18].
It means that a new image arrives at runtime, and this ML
model tries to reconstruct this image to a known one from
the set of known classes previously seen in the training
phase. Suppose there is a considerable difference between the
reconstructed image and the actual image. In that case, this
actual image is from an unknown class, indicating possible
OOD data. A similar idea is tested in [19], in which the authors
apply the Mahalanobis distance to improve the autoencoder
reconstruction process in order to capture OOD samples better.

Another possible solution based on DNN inputs is to create
a radius distance threshold calibrated during the training [4].
The idea is to perturb the DNN inputs, observe the correct
answer, and determine how considerable the distance is re-
garding the DNN decisions. The advantage of this approach
is that it does not need to inspect the internals of the DNN.
The drawback is that it tends to be biased to the training data.

2) Monitoring the DNN intermediate values: An example
of this approach is to monitor the neuron patterns observed
from the layers of the DNN. Such an approach usually com-
pares the recorded patterns of the DNN activation functions
during the training with those during runtime. After the stan-
dard training process, a runtime monitor is created by feeding
the training dataset to the network to store the neuron on-off
activation patterns using binary decision diagrams (BDD) [6]
or using a 2D projection [7]. For example, this projection is
an abstraction box built by maximum and minimum activation
function values during training. It inspects if the output of an
activation function falls inside of this abstraction box during
runtime after a new input pass through it. If not, it raises the
alarm considering this input as a novel input.

Besides, uncertainty quantification methods can be applied
to the intermediate outputs of a DNN [20], recognizing activa-
tion patterns that do not represent any data from the training
dataset. An uncertainty-based supervisor accepts input as a
typical sample if its uncertainty is lower than some threshold.

Thus, a high threshold leads to many false negatives, and a
low threshold leads to many false positives [21].

3) Monitoring the DNN outputs: For instance, an SM can
monitor the values in the last layer of a DNN [5], verifying
the decision’s confidence level. However, it is unreliable since
DNNs can output a wrong decision even with a high confi-
dence level. For avoiding this problem, Liang et al. proposed
enhancing the reliability of out-of-distribution image detection
in neural networks (ODIN) [22] by applying techniques that
decrease the DNN confidence values.

Uncertainty quantification methods can also be applied
directly to DNN outputs. Some methods that can be used for
this purpose are point-prediction networks, MC-dropout, and
DNN ensembles. However, for evaluating such methods, it is
necessary to apply metrics beyond the traditional combination
of false/true positives/negatives, such as S-1 score [21].

E. Benchmarking SM for ML-based components

Despite several works for monitoring ML at runtime, just
a few try to establish better benchmark methodologies. One
of these works proposes a less biased evaluation of out-
of-distribution detectors, called OD-test [23]. Same as our
work, the authors present a methodology that divides the data
into three parts: training/validation, in-distribution testing set,
and out-of-distribution testing set. Henrikson et al. [24] also
proposed a framework for benchmarking DNN monitors, using
six OOD datasets and seven metrics.

Nevertheless, our work differs from the two related works
presented above in three different aspects. Firstly, we propose
a methodology that covers the entire pipeline, from data gen-
eration to evaluation. Secondly, we apply metrics beyond the
traditional accuracy and positive/negative rates, with additional
statistical analysis in the results. Finally, we perform tests
using five different types of OOD data across a greater amount
of generated datasets. Next, we present our framework.

III. A BASELINE METHODOLOGY FOR BENCHMARKING
SM FOR ML CLASSIFIERS

The proposed framework is an adaptation of the FARM
[25] methodology. FARM is a methodology for fault injection
for dependability validation. It uses the input domain of a
target system as a set of faults F and a set of activations
A that specifies the domain to test the target system. The
output domain refers to a set of readouts R used for posterior
evaluation with a set of metrics M . Our framework is divided
into three modules, as illustrated in Figure 2.

After setting some initial parameters such as type of data
generation, the amount of data to be tested, which ML models
and SM to include, starts with the first module, called the data
profile. This module generates benchmark datasets in the next
module, called system under test (SUT).

The SUT is responsible for testing the ML and the SM
performance, generating the results (readouts) at the end of
the process. Readouts are inputs for the evaluation module.

The evaluation module is responsible for analyzing the
readouts through several metrics for different components of
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Fig. 2: A high-level overview of the framework.

the system. It provides the final analysis for each type of
readout. Next, we explain each module and its components.

A. Data profile

This is the first module and it is composed of two items:
• Activity: it contains in-distribution (ID) data, that is,

instances from a distribution known by the ML.
• Fault template: it contains rules for generating out-of-

distribution (OOD) data presented in Section II.B.
The benchmark dataset receives ID and OOD data to test

how the ML and the SM behave when exposed to expected and
unexpected data. Even though all types of OOD can be part
of a unique benchmark dataset, we generated datasets divided
by each category of OOD data.

An essential premise is that the generated benchmark dataset
is not applied to build or validate the SM or train the ML
model. This premise guarantees unbiased experiment results
and is more realistic since, in real scenarios, there are no
guarantees about which type of data will arrive at runtime.

B. System under test

The system under test (SUT) module receives the bench-
mark dataset as input and outputs readouts for each compo-
nent. To validate our framework, we chose ML models that
classify images and one SM for each of the three categories
mentioned in Section 2. Therefore, this module is composed of
two main items: a third-party ML model already trained; and a
third-party safety monitor containing a detection mechanism.
We call the ML and the SM third-party components since they
can be built aside from the framework.

This module simulates a stream of images randomly or-
dered. We apply datasets with random images since the image
datasets available in the literature use such a setting.

The simulation works as a stream of images coming from
the benchmark dataset set D that contains images X and labels
y, arriving at one of each at a time. The ML model receives
this image and makes a ŷ classification.

Next, the system triggers the SM, which checks a set of
predefined properties. These properties can be the ML’s clas-
sification ŷ with the associated confidence level, intermediate
layers, the input X , or even a combination of two or more
of these properties. In the case of this pseudo-code example,
the SM inspects the ML model’s internal properties (DNN’s
hidden layer) during the classification, as recently suggested
in the literature [6], [7].

After the inspection, the SM detector mechanism raises a
detection alarm or not (m̂). For this work, we consider a simple
reaction strategy for the SM. If an alarm is raised, it invalidates
the ML classification result; otherwise, it accepts the ML
classification. Next, we observe whether such intervention
produced a desirable outcome for the system or not. We call it
overall detection ŝ. A desirable outcome means that canceling
an ML output/agreeing with it was beneficial to the SUT. This
result is independent of whether the SM-specific detection was
correct or not in the OOD detection task. The criteria for
considering these two dimensions of the detection (specific and
overall) correct or not is discussed in the following subsection.
This process continues until the end of the stream. Thus, the
readouts are: the ground truth y, the ML classification ŷ, the
SM specific detection m̂, and its overall detection ŝ. They are
divided into three different categories:

1) ML readouts: it contains classification (e.g., class num-
ber), confidence value from the last layer, and interme-
diate values from hidden layers.

2) SM readouts: it contains two types of detection: a) spe-
cific (e.g., it outputs 1 for OOD detection; 0 otherwise);
b) overall (e.g., after OOD detection, it cancels the ML
decision (1); 0 otherwise).

3) General readouts: it contains general outputs from all
components above, such as processing time and memory.

As can be noted, the SM readouts contain results in two
dimensions: specific and overall. Considering two dimensions
for detection is more realistic and complete than just analyzing
the detection rate for the OOD data. The reason is that while
the SM tries to detect OOD data, it also can avoid that the
ML gives an answer that is different from the ground truth.
The opposite is also true. As a result, the SM can incorrectly
detect ID data as OOD data, hindering the correct decisions of
ML. All possible situations are given in the next Subsection.

C. Evaluation

This module receives the readouts as inputs containing false
positives/negatives and true positives/negatives regarding OOD
data detection’s specific task and the overall task of avoiding
an unsafe outcome. This module evaluates two main aspects:

1) The SMs performance: the objective is to assess the
SM results regarding the specific task of detecting OOD
data. This evaluation’s inputs are SM OOD detection
(e.g., raises/does not raise the alarm).

2) The overall impact of the SM: the objective is to
determine if the SM improves or worsens the overall
SUT accuracy. We analyze the SUT using the ML alone
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(baseline) and ML with the SM. This evaluation’s inputs
are the overall decisions made by the SUT with ML
alone and ML with SM, processing time, and memory.

3) Time and memory overhead induced by SMs: the
objective is to investigate the memory and processing
time efficiency of these methods during runtime.

This module contains two major items: the oracle, and the
metrics for ML and SM. The oracle determines positive and
negative data and whether a test has passed or failed. Thus,
the oracle considers a correct specific detection when the SM
correctly detects OOD data. Besides, the oracle considers a
correct overall detection for the SUT when the SM correctly
avoids a wrong ML classification for ID or OOD data. The
oracle takes into consideration the following scenarios to
determine whether a readout is correct or incorrect:

• ID data arrives in the stream
– If the SM detects OOD data: it means a false

positive for the specific task of OOD detection.
∗ If the ML classification is equal to the ground

truth: it means a false positive for the overall
task of avoiding a failure since the SM intervened
without necessity.

∗ If the ML classification is different than the
ground truth: it means a true positive for the
overall task of avoiding a failure since it canceled
the ML misclassification for ID data.

– If the SM does not detect OOD data: it means a
true negative for the specific task of OOD detection.
∗ If the ML classification is equal to the ground

truth: it means a true negative for the overall task
of avoiding a failure since the ML gave a correct
classification even though the SM did not detect
OOD data.

∗ If the ML classification is different than the
ground truth: it means a false negative for the
overall task of avoiding a failure since the ML
misclassified the OOD data and the SM did not
detect it, which could cancel a wrong ML output.

• OOD data arrives in the stream
– If the SM detects OOD data: it means a true

positive for the specific task of OOD detection.
∗ If the ML classification is equal to the ground

truth: it means a false positive for the overall task
of avoiding a failure since the ML gave a correct
classification but the SM wrongly intervened.

∗ If the ML classification is different than the
ground truth: it means a true positive for the
overall task of avoiding a failure since the ML
gave an incorrect classification and the SM correct
canceled the ML decision.

– If the SM does not detect OOD data: it means a
false negative for the specific task of OOD detection.
∗ If the ML classification is equal to the ground

truth: it means a true negative for the overall task

of avoiding a failure since the SM detection for
OOD data also avoided an ML misclassification.

∗ If the ML classification is different from the
ground truth: it means a false negative for the
overall task of avoiding a failure since the SM
detection for OOD data also avoided an ML
misclassification.

The only exception for the above rules is for novelty class
detection. When OOD data arrives in the stream, if the SM
correctly detects OOD data, it will always be interpreted as
true positive since the SM always correctly cancel the ML
classification, independently of the ground truth. Conversely,
if the SM does not detect OOD data, it will always be a false
negative. If the SM lets the ML deal with a class that it was
not trained in before, it can be regarded as unsafe. In order
to evaluate these situations, we have selected in the literature
a set of metrics that are pertinent for our study. Hence, we
apply seven metrics:

• Matthews correlation coefficient (MCC): it ranges from
-1 if (ML or SM always wrong) passing through 0 (ML
or SM is accurate as random) to 1 (ML or SM always
right). This metric is more reliable than traditional metrics
such as accuracy. It yields a high score only if the ML or
SM can be assertive in all of the four confusion matrix
categories [26]. In contrast, accuracy only considers the
portion of the right answers. In a scenario in which the
number of a class is 80%, the accuracy could yield a
score of 80% for an SM that did not detect other classes.

• False positive rate (FPR): also known as type-I error. It
indicates how many false alerts the SM raises for the task
to detect OOD data. High values means the SM indicates
a problem wherein there are not in most cases.

• False negative rate (FNR): also known as type-II error. It
indicates how often the SM misses detecting OOD data.
If this value is high, it indicates that the SM does not
recognize the difference between the ID and OOD data.

• Precision and recall (Pr and Re): the fraction of correct
detection and the fraction of available OOD data. These
metrics help to indicate how well the SM detected OOD
data through the benchmark dataset.

• Micro-F1: harmonic mean (global) for the prediction x
recall. It helps to assess the quality of multi-label binary
problems, which makes them suitable to be applied in the
SUT evaluation.

• Critical difference diagram: it is applied for all MCC
results through all datasets. It shows how statistically
different are the results between the SMs.

Next, we detail each component’s choice and its parameters
for the three modules, and the benchmark results.

IV. EXPERIMENTS AND RESULTS

A. Data profile

We use three datasets as the activity of our framework:
• GTSRB [27]: German traffic signs with 43 classes, with

39200 instances for training and 12600 for testing.
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• BTSC [28]: Belgium traffic signs with 62 classes, divided
into 7000 images for training and testing.

• CIFAR-10 [29]: ten general classes (e.g., dog, car ...),
with 50000 instances for training and 10000 for testing.

Next, we apply a fault template for the five classes of OOD
presented in section II-B: novelty, anomaly, distributional shift,
noise, and adversarial inputs. For adversarial inputs generation,
we apply the fast gradient signed method (FGSM) [30]. For
the noise and distributional shift, we generate 19 different
transformations with two types of intensity varying from 1
to 5 (e.g., snow (1) = image with a bit of snow; snow (5)
= heavy snow) [31]. All transformations were applied over
CIFAR-10 and GTSRB datasets. The benchmark datasets are
composed of a transformed version of the ID datasets that we
previously applied for training the ML algorithm and building
the SM. Thus, we use 20% of the ID data for the benchmark
dataset without transformation. The entire original dataset is
transformed into a specific variation. For obvious reasons, this
20% of ID data was also not applied to the ML training.

For novelty class detection, the fault template applies one
dataset as an ID dataset and another dataset with new classes
as OOD data, resulting in three benchmark datasets:

• GTSRB as ID data, and BTSC as OOD data: this combi-
nation tests whether the SM can distinguish new classes
that have similar characteristics to the known ones.

• GTSRB as ID data, and CIFAR-10 as OOD data: this
combination tests whether the SM can distinguish new
classes that are very different from the known ones.

• CIFAR-10 as ID data, and GTSRB as OOD data: this
combination tests the same as the aforementioned com-
bination. However, since the ID data is different, the ML
and the SM are built with different data. Hence, this
permutation produces different outcomes.

In total, we produced 79 benchmark datasets. More details
can be found in the results section of our repository [32].

B. System under test
We simulate a scenario in which the SM has to detect

OOD data by checking one RGB-colored image at a time
in a randomly ordered stream of images. Once the SM
makes a detection, it cancels the ML classification since this
classification is potentially wrong. If nothing is detected, the
ML classification is accepted.

For the ML model, we use a LeNet [33] since it is a simple
and traditional convolutional neural network (CNN) algorithm.
It contains around 100,000 parameters and 128 neurons in the
last hidden layer. For the monitors (noted as SM), we use one
method of each of the three different strategies of data-based
SM (presented in section II-D) for monitoring a DNN model:

• DNN inputs: adversarially learned one-class classifier for
novelty detection (ALOOC) [18]. This method learns how
to reconstruct each class during the training phase. It
receives an image during operation, tries to reconstruct
this image to the known class, and analyzes the loss
error resulting from this reconstruction. If this loss error
surpasses a safe threshold, ALOOC flags it as OOD.

• DNN intermediate values: outside-of-the-box abstraction
(OOB) [7]. This method projects a 2D-box region from
the activation function values (RELU) from the hidden
layers of the DNN during the training phase. At runtime,
it receives an image and projects a point from it built from
the outputs of the activation function from the same DNN
layer used during the training. If this point falls outside
the 2D box, OOB will flag this image as OOD.

• DNN outputs: detector of out-of-distribution images in
neural networks (ODIN) [22]. This method learns how to
balance the confidence values outputted along with the
DNN decision. It uses these values from the last layer
of DNN during training and applies a method known
as temperature scaling, which will scale the confidence
values to a new threshold for considering an image as
OOD. During the operation, ODIN verifies if the DNN
confidence value over an incoming image respects the
threshold. If not, ODIN will flag this image as OOD.

C. Parameter’s evaluation and choice

Next, we present the chosen parameters for the SMs. To
avoid biased results, all the initial parameters were tuned using
only the ID dataset and are summarized in Table I.

TABLE I: SM parameters tested in the experiments.

SM Parameter name Parameter values
ALOOC Optimizer ADAM, RMSProp

Epoch 200
Loss threshold average per class*

OOB γ 0, 0.1, 0.35
# of clusters 0, 3, 5*, 17*
Dimensionality reduction simple, PCA*, ISOMAP*

ODIN Temperature 1000
Magnitude 0.0014, 0.0025
Confidence threshold 0.0237*, 0.1007*

We explored the original parameters for each SM, and we
also found/tested new values/methods not mentioned in their
original papers (marked with *). For ALOOC, the authors did
not investigate the influence of the optimizers in the original
paper. Thus, we tested two different optimizers: ADAM [34]
and RMSProp [35]. We also analyzed the best model for
each class through different epochs. In general, all the models
achieved a better convergence around 200 epochs. Since the
threshold value for considering whether a class is considered
OOD does not indicate in the original paper, we considered the
average reconstruction loss for each class during the training.

For the OOB method, we test the parameter responsible for
enlarging the size of boxes (τ ) with the same range of values
proposed by the original paper. We applied the same number
of clusters as suggested by the original paper (no clusters or
three clusters). However, we also tested with a possible optimal
number of clusters. The possible optimal number of clusters
K for the K-means algorithm contained in the OOB method
is chosen through the Elbow analysis [36]. Thus, the best
K value was 5 and 17 for CIFAR-10 and GTSRB, respec-
tively. Finally, we also tested three different approaches for
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the 2D-dimensionality reduction parameter: simple projection
(proposed in the original paper), PCA [37], and ISOMAP
[38]. ISOMAP is a popular nonlinear dimensionality reduction
method, and PCA is also a popular method, but linear. With
these two suggested methods, we can analyze if the choice of
the dimensionality reduction methods influences the outcomes.

Regarding ODIN, we set the temperature (1000) and the
magnitude parameters (0.0025 and 0.0014, for GTSRB and
CIFAR-10, respectively) as suggested by the authors. However,
we chose the confidence thresholds for determining OOD data
by selecting the lower confidence value outputted from the
method when exposed to the training data. In this case, 0.0237
and 0.1007, for GTSRB and CIFAR-10, respectively. We had
to assume a confidence value threshold since it would not be
possible to use ODIN as an SM without it.

D. Results

1) SMs performance: we use the positive/negative data and
the evaluation metrics as mentioned in Section III.C. Since
we measure the detection, there is no necessity to include the
measurements for the ML. Best results are written in bold.

Table II shows these results for novelty class: GTSRB as
ID dataset and BTSC as OOD dataset; CIFAR-10 as ID and
GTSRB as OOD; and GTSRB as ID and CIFAR-10 as OOD.
The first benchmark dataset has the challenge of having ID
and OOD data with a similar domain, while the other two
have very different classes from each other.

TABLE II: Comparing data-based monitors for novelty class.

Variation SM MCC FPR FNR Pr Re F1

GTSRB-BTSC
ALOOC

OOB
ODIN

0.01
0.23
0.03

0.50
0.61
0.99

0.49
0.11
0.0

0.17
0.24
0.16

0.51
0.90
1.0

0.57
0.52
0.06

CIFAR10-GTSRB
ALOOC

OOB
ODIN

0.02
0.11
0.23

0.63
0.72
0.61

0.34
0.16
0.10

0.18
0.20
0.24

0.66
0.84
0.9

0.47
0.41
0.52

GTSRB-CIFAR10
ALOOC

OOB
ODIN

0.05
0.15
0.07

0.56
0.79
1.0

0.37
0.09
0.02

0.81
0.82
0.17

0.63
0.91
0.98

0.63
0.74
0.06

The MCC results indicate that the SM is sometimes slightly
better than a random classifier (MCC ≈ 0). We observe
that these methods’ weakness is in the high amount of false
positives, yielding a borderline MCC performance. According
to the results, just ALOOC obtained a false-positive rate of
around 50%. However, it had many false negatives, which can
be considered worse depending on the scenario. In general,
all SM had a poor performance due to the unreliable nature
of DNN confidence values, and the high nonlinear nature of
activation functions in ODIN and OOB, respectively.

Next, in Table III, we show the same analysis but using
CIFAR-10 and GTSRB after being modified through an ad-
versarial attack known as fast gradient sign method (FGSM).

According to the results, for CIFAR-10, the methods
achieved negative values for MCC, which indicates perfor-
mance worse than a random classifier. For GTSRB, the results
are slightly better, but the MCC values can be considered

TABLE III: Comparing data-based monitors for CIFAR-10 and
GTSRB datasets with a adversarial attack.

CIFAR-10

Variation Method MCC FPR FNR Pr Re F1

FGSM
ALOOC

OOB
ODIN

-0.23
-0.13
0.06

0.89
0.92
0.14

0.29
0.16
0.81

0.28
0.31
0.37

0.71
0.84
0.19

0.25
0.24
0.62

GTSRB

Variation Method MCC FPR FNR Pr Re F1

FGSM
ALOOC

OOB
ODIN

0.19
-0.01
0.11

0.22
1.0
0.92

0.59
0.0
0.02

0.44
0.31
0.34

0.41
1.0

0.98

0.66
0.14
0.26

as flawed as a random classifier. Despite the good values
of micro-F1 for ODIN and ALOOC, in the CIFAR-10 and
GTSRB datasets, respectively, the rate of false negatives was
high. It means that the ML classifier did not give the correct
prediction, and the SM did not detect the attack.

Next, in Table IV, we show the results for CIFAR-10 and
GTSRB datasets with different types of distributional shift.
Here, we see a surprising but negative outcome: OOB suffers
from a lot of false positives. In contrast, ODIN suffers from
many false negatives. It means that they always tend to miss a
detection or to say that everything is OOD data. ALOOC got
a fair MCC value for CIFAR-10 with intense fog and a good
MCC value for GTSRB with heavy snow.

TABLE IV: Comparing data-based monitors for CIFAR-10
and GTSRB with different types of distributional shift.

CIFAR-10

Variation Method MCC FPR FNR Pr Re F1

rotated
ALOOC

OOB
ODIN

0.0
0.02
-0.1

0.0
1.0
0.32

0.29
0.0
0.81

1.0
0.14
0.09

0.71
1.0

0.19

0.83
0.04
0.66

snow (5)
ALOOC

OOB
ODIN

-0.01
0.0

0.14

0.42
1.0
0.08

0.59
0.0
0.81

0.14
0.14
0.29

0.41
1.0

0.19

0.62
0.04
0.8

fog (5)
ALOOC

OOB
ODIN

0.47
0.0

-0.01

0.03
1.0
0.21

0.59
0.0
0.81

0.68
0.14
0.13

0.41
1.0

0.19

0.88
0.04
0.73

GTSRB

Variation Method MCC FPR FNR Pr Re F1

rotated
ALOOC

OOB
ODIN

0.0
0.09
-0.12

0.0
0.75
1.0

0.55
0.16
0.02

1.0
0.21
0.19

0.45
0.84
0.98

0.62
0.38
0.06

snow (5)
ALOOC

OOB
ODIN

0.81
0.01
0.16

0.0
0.83
0.85

0.29
0.16
0.02

1.0
0.2

0.22

0.71
0.84
0.98

0.94
0.29
0.28

fog (5)
ALOOC

OOB
ODIN

-0.28
0.0
0.0

0.93
0.84
0.98

0.29
0.16
0.02

0.16
0.2
0.2

0.71
0.84
0.98

0.15
0.28
0.1

Another interesting result for ALOOC is that despite the
low MCC performance on the other benchmark datasets, it
got relatively good micro-F1 results. It highlights that this
method tends to have a good amount of false negatives but
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rarely gives a wrong output when detection is signaled. Again,
methods based on inspecting inputs seem to be more effective
in detecting changes in the pixel values distribution.

Once we evaluate the methods in all datasets, we investigate
how their results statistically differ from each other. The reason
is to observe if there is an SM that is better than the others. We
applied a Friedman test with Nemenyi posthoc with 95% the
confidence level for all methods ranks through every dataset
regarding the MCC metric. From that, we build a critical
difference diagram illustrated in Figure 3.

Fig. 3: Critical difference diagram between the three methods.

The result shows that ODIN achieved the best results in
more benchmark datasets than the other two SM. However,
there is no statistical difference between the SMs. It means
that regarding the MCC results, there is no best SM method.
Next, we evaluate how much the SM impacts the SUT when
it works along with the ML classifier.

2) Overall impact of the SM: As previously explained,
the objective is to evaluate how much the SM impacts the
SUT when it works along with the ML classifier. Table V
shows the overall SM’s impact in the SUT when using GTSRB
or CIFAR-10 regarding ID data. The results are expressed as
MCC values. To evaluate the SM, we also use a percentage of
relative change showing how much better/worse it performed
compared to the baseline (ML alone).

TABLE V: MCC values for SUT with/without SM for GTSRB
or CIFAR-10 as ID dataset.

Method GTSRB CIFAR-10

ML alone 0.96 0.74
ML + ALOOC 0.51 0.53
ML + OOB 0.64 0.61
ML + ODIN 0.50 0.64

In the GTSRB dataset, the best values for the ALOOC
method were obtained when using the ADAM optimizer. In
contrast, the OOB method obtained the best results when using
3 clusters, ISOMAP, and an enlargement factor of 0.1. As
mentioned earlier, for ODIN, the threshold was set to 0.0237.

For the CIFAR-10 dataset, the best optimizer for ALOOC
was ADAM. For OOB, the best parameters were: 5 clusters,
ISOMAP, and an enlargement factor of 0.35. For ODIN, we
set the threshold to 0.1007.

As can be noted, all SM methods perform worse than the
ML alone when exposed to ID data. This result is expected due
to the generalization power of ML models. However, a reliable
SM is also the one that can perform well when exposed to ID
data, avoiding an ML misclassification or simply not raising
a false alarm hindering a correct ML classification.

These results show the best SM’s performance was obtained
by the outside-of-the-box and ODIN, on GTSRB and CIFAR-
10, respectively. Results indicate that the SM performed con-
sistently better than a hypothetical random classifier (MCC =
0). However, they also show a significant gap between the
performance of the ML alone and the SM for ID data,
especially in the GTSRB that has four times more classes than
CIFAR-10. This result is interesting since the tested monitors
use information from the ML model and build their hypothesis
over ID data.

3) Time and memory overhead induced by SMs: We show
in Table VI an example of the performance for ALOOC,
OOB, and ODIN, respectively, in the three benchmark datasets
for novelty class detection. The values are expressed in sec-
onds and represent the average time spent on the tasks of
classification and monitoring on a single image. We used a
computer with a Processor Intel(R) Core(TM) i7-9850H CPU
@ 2.60GHz, and 32GB of memory.

Worth mentioning that we can have slight differences be-
tween the prediction time in the three methods since they
use different deep learning libraries. ALOOC uses Keras,
OOB uses Tensorflow, and ODIN uses PyTorch. Besides, the
SUT time also contains the remaining time from other small
processes involved in the experiment, so the summing between
the prediction and monitoring time is lower than the SUT time.

TABLE VI: Time impact of SM per instance in seconds for
novelty class detection.

Method ML SM SUT

ALOOC 0.0070 (3.0%) 0.2217 (96.8%) 0.2288
OOB 0.0021 (3.9%) 0.0529 (96.0%) 0.0551
ODIN 0.0007 (3.0%) 0.0246 (96.9%) 0.0254

According to the results, ODIN is the fastest method. Except
when using OOB with ISOMAP, all three methods needed
no more than 0.07 seconds to spot OOD data. Such process
time can be considered fast enough to be applied at runtime.
Besides, they can be optimized, potentially reducing this time.

However, the monitoring task is always slower than the
prediction and can be responsible for 96% of the necessary
time for a SUT to do the task. Since memory is also an
important constraint, especially on embedded systems, we
show in Table VII the memory efficiency of the methods when
performing a novelty class detection over the GTSRB dataset.

TABLE VII: Memory size of ML, and SM in MB.

Method ML SM

ALOOC 3.8 98.9
OOB 4.3 6.4
ODIN 2 1.5

As can be seen, ALOOC needs a considerable amount of
memory or disk space due to the necessity of developing one
monitor for each class. For instance, even though ALOOC
needs just 2.3MB per class, it is necessary almost 100MB to
monitor all 43 classes contained in the GTSRB dataset. For
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OOB, it is also necessary to build one monitor for each class.
However, the amount of memory needed is not huge since it
uses just some stored arrays to make the boxes. For ODIN,
it is not necessary to build one SM for each class. Moreover,
since the algorithm needs to be applied during the training
phase to collect the thresholds for the confidence values, it
can use just a tiny amount of memory to do the inspection.

E. Threats to validity
In order to analyze and mitigate threats to the validity of the

results, we present below a summary of arguments for external
and internal validation.

• External validity: All tested SMs were already compared
to other methods in their original papers. They obtained
the best results during the comparison. Besides, we also
chose three different approaches of monitoring (inputs,
intermediate values, outputs) that may cover an accept-
able range of SM approaches based on data. However, it
is worth mentioning that this study is a first benchmark
work. Thus, other approaches may be published with
better performances in the future.

• Internal validity: What could have to lead us to the wrong
conclusions in our study?

– Bad parameters choices for the SM: aiming at im-
proving the SM performance, we explored additional
parameter values than those explored in their orig-
inal papers. For instance, we applied different di-
mensionality reduction methods for the outside-the-
box. However, even though different dimensionality
reduction methods can bring better results, they also
introduce a high cost to time and memory perfor-
mance. Regarding ALOOC and ODIN, we had to
choose criteria to the threshold value for considering
whether a class is considered out-of-distribution or
not. This way, if one applies different criteria for
these methods, they will result in different outcomes.
However, such criteria had to be deducted since they
are not contained in their original papers. Besides,
ODIN used OOD data to calibrate their monitor,
what can be considered unrealistic. Hence, in this
work, all the parameters were chosen using just ID
data. It makes the scenario more realistic and harder,
which drastically decreases the SMs performance.

– Choice of datasets: even though we chose datasets
widely applied in the computer vision literature,
the choice of the amount of ID data accessible for
building the ML classifier and the SM can influence
both. Furthermore, the amount of ID and OOD data
in the benchmark datasets also can influence the
results. However, we followed traditional ways to
divide data (e.g., 80/20 for training and test). Besides,
the authors of OOB [7], and ALOOC [18] test their
methods considering the same dataset for ID and
OOD data, which they test novelty detection by
training the ML with 9 classes and omitting one, or
training with 8 classes and omitting two, and so on.

However, we in this work we test novelty detection
using an entirely new dataset as OOD data along
with a part of ID data (ex: CIFAR-10 + GTSRB).
Domain of validity: The setting CIFAR10-GTSRB
constitutes two different datasets that do not have
the same validity domain [39] (i.e., GTSRB is not
only out-of-distribution but also out of the validity
domain). Thus, the task of detecting OOD data
should be less complicated in this scenario. However,
the SM methods continued to be inefficient.

V. CONCLUSION AND RESEARCH DIRECTIONS

In this work, we proposed a framework for benchmarking
safety monitors for ML classifiers. We argue that there is a
need for a better framework for benchmark SMs based on
data by applying more metrics beyond accuracy and AUROC
curves. Thus, we proposed a minimal set of measurements that
should be considered when benchmarking such solutions.

Besides, we also showed that measuring these SMs is less
straightforward than it seems. We presented two dimensions
that need to be investigated: the SM’s overall impact on the
SUT; and the detection performance of the SMs. Our approach
allowed insights into three categories of data-based monitors.

Our results indicate at least four general takeaways for the
current solutions that are solely based on DNN’s data:

• The overall accuracy in the detection tends to be as bad
as a random classifier due to the high amount of false
positives or false negatives, depending on the scenario.

• Such methods tend to negatively affect the system under
test since they yield too many false positives interfering
with the correct ML decision.

• They need a considerable amount of memory or disk
space since a monitor can consume up to 100MB.

• They are not so fast to perform the detection and have a
considerable overhead compared to the ML software.

The tested SM were exposed just to novelty detection in
their original papers. However, testing these SM to other four
types of OOD data was important to show that:

• SM based on DNN inputs: it has the advantage that it does
not need to inspect the internals of the DNN. Thus, it can
make the monitoring independent of the ML classifier.
However, it has the drawback of being biased to the data
used during the training.

• SM based on DNN intermediate values: it has the ad-
vantage of inspecting the ML model as a white box.
That is, it allows to look at the internal values that
led the DNN to decide. However, the drawback is that
the activation functions are insufficient to provide all
information helpfully learned from the DNN.

• SM based on DNN outputs: it has the advantage that it
decreases and equilibrates the confidence values from the
DNN. However, similarly to approaches based on DNN
intermediate values, the drawback is that it relies heavily
on the performance of the DNN.

A limitation of this work is that we did not apply more and
bigger DNN architectures. Such experiments could produce a
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more robust evaluation. Moreover, we benchmarked just over
image datasets, not considering an entire system. Therefore,
it is also essential to investigate the performance of the SMs
inside a simulator to achieve a complete analysis. Finally, as
future work, we also want to add SMs based on uncertainty
quantification [20], [21] to our experiments.

The main conclusion is that using such data-based monitors
does not provide sufficient confidence for their use in a safety-
critical application. Thus, we want to explore how to combine
data-based and model-based monitors.
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