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Synopsis

A Collision Avoidance (CA) system with collision avoidance algorithms is critical to Autonomous Surface
Vehicles (ASV). This paper explores a hybrid collision avoidance method based on an improved hybrid A*
algorithm for inland waterway scenarios. This method uses discrete control actions, such as heading and speed
setpoints, as input and generates a modified local path and control setpoints. A pre-processing method, namely
a collision velocity check, is used to speed up the computation progress. Multiple aspects, including safety,
path length, sailing time, rule compliance, and smoothness, are considered in finding the optimal collision-free
path. We implemented the method under the Robot Operation System (ROS) architecture and conducted real-ship
experiments for validation. The results show the effectiveness of this method.
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1 INTRODUCTION
There has been a growing interest in autonomous sailing in recent years. With the rapid development of

autonomy today, it is a trend that Autonomous Surface Vessels (ASV) will reform the current sailing and shipping
pattern due to their efficiency and performance in navigation. To achieve higher autonomy levels, many studies
and projects have been carried out in the last decade. E.g., the Norwegian University of Technology and Science
(NTNU) conducted a project, AUTOSEA (Brekke et al., 2019), aiming at sensor fusion and collision avoidance for
ASVs. Another research project, Autonomous Barges for Smart Inland Shipping (AUTOBarge), was established
in 2021 by multiple universities, research organizations and companies in Europe, e.g., KU Leuven, TU Delft,
Kongsberg, RH marine and Maritime Research Institute Netherlands (MARIN), to explore the idea of smart inland
shipping (Autobarge).

One critical part of ASVs is a collision avoidance (CA) system with an effective and efficient collision avoidance
algorithm or path planning algorithm. Though the different terminologies are used in different literature, the
goal is the same: to find a path that is safe, optimal with regard to optimization goals, and feasible for the
own ship (OS) during the whole sailing time. Typically there are two flavours of path planning, global path
planning and local path planning (Vagale et al., 2021). The former focuses on the static environment and known
obstacles and optimizes factors like fuel cost and sailing time. This paper focuses on the latter one, the local path
planning, which emphasizes avoiding the dynamic obstacles in direct vicinity to generate a feasible and safe path.
However, designing a real-time algorithm that can simultaneously cover multiple aspects is challenging. First,
the environmental dynamics and moving obstacles need to be tackled. Planning a route in restricted areas also
requires more accurate knowledge on the own ship’s dynamics. Besides, the compliance with the rules, such as
International Rules for Preventing Collisions at Sea (COLREGs) for maritime scenarios and Police regulations
for the navigation of the Rhine (RPR) for the Rhine river, further increases the difficulties of algorithm design. In
addition, the collision avoidance algorithm needs to generate solutions online with sufficient computational speed
to ensure safety. Typically a trade-off needs to be found among all these concerns.
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Figure 1: The architecture for autonomous sailing of the vessel

The graph search method is a classical algorithm for path planning and collision avoidance. The initial idea of
the graph search method aims to find the shortest path between points a and b on a geometric map. Later it has
also been applied to find the solution between two states in a system, e.g., find a sequence of moves to win in a
chess game. One well-known method was proposed by Dijkstra (1959) and named after him. During the search
progress, Dijkstra’s algorithm favors lower-cost paths. However, it does not utilize any heuristic information, even
if a general direction has already been obtained. A-star (A*) (Hart et al., 1968) was proposed based on Dijkstra’s
method. It uses the actual distance from the start and the estimated distance to the goal. Due to the success of
applying A* in various fields, many variants have been further proposed. Weighted A* and dynamic weighted
A* were proposed to adjust the impact of actual cost and heuristic (Pohl, 1970; Pearl, 1984). Dynamic A* (D*),
Lifelong Planning A* (LPA*), and a light version, D* lite, were proposed for incomplete map information and
changing maps costs (Stentz, 1997; Koenig et al., 2004; Koenig and Likhachev). In addition, Dolgov et al. (2008)
proposed hybrid A* (HA*) considering the dynamics of the vehicles. It associates a continuous state with each
cell based on the motion constraints, which builds a connection between the search progress of the A* and the
vehicle dynamics. Another characteristic is to calculate the heuristic in a hybrid way: geometry-dependent and
dynamic-dependent. Typically, an additional smoothing step is required to modify the path further, considering
more details of dynamics or kinematics.

There are also many applications of the variants of A* in the maritime scenario. One variant, a heuristic Rule-
based Repairing A* (R-RA*), was used for maritime CA by Campbell and Naeem (2012) within a decision-making
framework. Another variant, Theta* (Daniel et al., 2010), uses key points (such as corners) during path searching
and a line of sight pointing directly back to an ancestor during retrace. It allows the searching towards any angle in a
grid map, which weakens the restrictions of grid size. Kim et al. (2014) proposed an approach based on the Theta*
for real-time path planning, considering both angular rate (yaw rate) and heading angle of unmanned surface
vehicles (USVs). Singh et al. (2018) extended the implementation of this Theta* in an environment cluttered
with static and moving obstacles and different current intensities. These two methods were applied in more
realistic environments. However, they still rely on the grid map, so the selection of grid size will influence its
computational efficiency and collision avoidance decision. Besides, only simple encounter scenarios are tested,
and the computational speed is not mentioned or ignored. In addition, rare literature tested their algorithms on
a real ship. In order to produce a comprehensive collision avoidance solution in real-time concerning multiple
optimization aspects, this paper has applied an improved hybrid A* algorithm that generates a modified local path
and associated control setpoints for inland waterway scenarios. With the discrete control input, the ship dynamics
or kinematics have already been considered during the search progress, such that no extra smoothing step is needed.
A real-ship experiment was conducted as the validation.

2 AUTONOMOUS SYSTEM OVERVIEW
The autonomous sailing system designed in this research follows the architecture of Maritime Research Institute

Netherlands (MARIN) (see in Fig1). It has basic modules for autonomous vessels, like sensing, navigation and



control. All the modules are built as packages based on Robot Operation System (ROS). The emphasis of this
paper, collision avoidance, is implemented as a plugin in the local planner of the navigation module. A Shore
Control Center (SCC) that MARIN uses for their maritime simulators has been adopted to control ASVs remotely.
It can send and receive data and commands and has a graphic user interface (see in Fig 2) for displaying states of
the OS and target ships (TS), editing global waypoints, publishing missions (e.g., start a path follower or heading
keeper), and switching control modes.

Figure 2: Shore Control Center

ROS is an open-source framework designed for general robot software development. It provides various
packages for essential functions, like the sensor and controller modules. Based on this, MARIN applied it in a
maritime context. The function of collision avoidance is implemented in the node “(move base)” of the navigation
stack. Its standard structure consists of five parts: global planner, local planner, global costmap, local costmap,
and recovery behavior. The whole “move base” takes the global waypoints from SCC as the input. The global
planner is re-designed as a straight-through module that outputs the following few global waypoints. Besides,
it will check if there are any input changes. Next, the local planner carries out the planning and decision stage
of collision avoidance. Finally, the feasible path is calculated using the hybrid algorithm with the given global
waypoints and the data from sensors (e.g., OS, TSs, shore). A detailed design of the local planner is shown in Fig
3, and pseudo-code is given in Algorithm 1.

Generally, the environmental information, such as wind, current, land, and water depth, is obtained from the
chart and sensors. Obstacle information is obtained from AIS, Radar, Lidar, and camera sensors. Except for the AIS
data, which already includes the target point date (sent in NMEA sentences), object detection and classification are
required for other sensors. After that, the future motion of these objects will be further used for the cost estimation
in the path planning step. Based upon environmental information, obstacle information, and together with the
given discrete control action, a continuously varying trajectory segment can be calculated. We select the trajectory
combination with the minimum total cost according to the cost models concerning all the aspects. Both modified
waypoints and control setpoints are outputted to the controller.

3 COLLISION AVOIDANCE ALGORITHM
The collision avoidance algorithm used in this research is based on a hybrid A* method. An intermediate

collision velocity check is included to speed up the computations. We further customized the implementation, and
modified cost functions in this research for inland waterway scenarios. A set of discrete control actions is used as
the input. According to the kinematic model used in this paper, heading and speed options are input.

3.1 Improved hybrid A*
The improved hybrid A* (IHA*) was proposed by our previous work (Miao et al., 2022). Based on HA*, node

map is used as the search space (see in 4), which is dynamically generated during the solution searching, instead
of using a conventional grid map. Each movement is independent of the grid size and shape. This algorithm uses
discrete control actions as input. As an improved version of HA*, it can also associate the continuous state of the
own vessel with nodes, and associated trajectories can be generated. A pre-processing method, collision velocity
check, filters out the set of unsafe control inputs to increase the computational speed. Cost functions and heuristics



Figure 3: The structure of the designed local planner

are re-designed for the inland waterway context in terms of five aspects: safety, path length, sailing time, rule
compliance, and path smoothness. Rule compliance is considered a part of the cost function. For the real-time
implementation, online replanning is performed and executed during experiments.

A standard kinematic model of ASVs is used in this research shown as follows:
ẋ = u · cosϕ

ẏ = u · sinϕ

u̇ = at
ϕ̇ = an/u

(1)

where (x,y) are the position of the ship, u is the speed, and ϕ is the heading angle. at and an are tangential and
normal accelerations, respectively. This model comprises various kinematic models, such as “Dubins car” model
(Dubins, 1957).

Fig 4 illustrates the search process. The timeline at the bottom represents the entire planning time horizon from
T0 to Tend . It is broken down into discrete time slots with a fixed time interval ∆t. With the current state of the OS
and given control actions (e.g., heading offset -15°, 0°, and 15°, and full speed), the associated trajectories (blue
solid lines) for each time slot and state of the nodes (red solid dots) can be calculated using the motion model. The
entire search space is like a ‘tree’.

Figure 4: Search process of the IHA* Figure 5: Collision Velocity Check

Instead of expanding in all directions equally, the hybrid A* always favors the path with a minimum total cost,
which consists of the actual cost and the heuristic, defined as:

f (n) = g(n)+h(n) (2)

where g(n) is the actual accumulated cost (historical cost) of the node n represented by the green solid line and
h(n) is the heuristic cost of the node n represented by the orange dotted line.

To speed up the search process of the hybrid A*, a method, collision velocity check, is proposed and used in
the pre-processing step. Its essential idea is to remove the potential dangerous velocity area from the search space.



With the prediction of the trajectory of both OS and obstacles, the minimum distance is checked at discrete future
time points.

In addition to pre-processing, a post-processing step, pruning, is also used for further acceleration. It aims
to cut down the branches that contribute only very little to the solution, but vastly increase the size of the search
space ‘tree’. Usually, such branches have a similar state to existing ones, but with relatively higher costs. As
shown in Fig 4, the nodes in the dotted circle will be compared. The similarity of all kinds of states (position,
velocity, acceleration, etc.) needs to be checked in this node-searching HA* method. The branch will be pruned
when similarities are found in all aspects. The pseudo-code of implementation of this improved HA* is given in
Algorithm 1.

Algorithm 1 Improved hybrid A* (nstart ,ndes)

1: Listopen← nstart
2: Listclose← /0
3: while Listopen! = /0 do
4: Listopen = Sort(Listopen, f ,reverse)
5: np = PopTop(Listopen)
6: Listcloce← Listclose∪np
7: if GoalReach = true then
8: break
9: else

10: for heading = h1,h2, . . . ,hi, . . . ,hI do
11: for speed = s1,s2, . . . ,s j, . . . ,sJ do
12: compute next position ni, j

T
13: if CVC = f alse then
14: continue
15: else
16: compute total cost f i, j

17: if Pruning = true then
18: continue
19: else
20: Listopen← Listopen∪ni, j

T
21: end if
22: end if
23: end for
24: end for
25: end if
26: end while

3.2 Assumptions
The complexity of ASV collision avoidance is massive and a number of simplifications have been made to

reduce the intricacies of the problem. Here, the following assumptions have been made:

• The sailing area is considered to be in an inland waterway environment. Temporal and spatial variability in
the chosen study area in terms of environmental effects and moving vessels is considered quasi-static for the
period of the voyage.

• The OS is modeled as a rigid polygon under the assumption that an effective, robust controller quickly
establishes the commanded velocity.

• AIS measurements are used to determine the obstacle position over time with a Kalman filter.

• The moving obstacles are modeled as a polygon that has a fixed shape with different scales.

3.3 Safety domain & rule-compliance domain
A proper safety domain needs to be used for the collision risk evaluation. Since we focus on the inland

waterway scenario, a simple circle domain is unsuitable for this research. It is a typical situation when two
vessels pass each other from the two sides of the canal. There should be no risk or low risk. Thus, an ellipse



is selected to represent the safety domain of our ship as seen in Fig 6. The rule-compliance domain defines the
current encountering situation when obstacles approach, which is also represented as an ellipse, while the size can
be different. The encountering cases are also defined in this domain.

Figure 6: Safety domain and rule-compliance domain

3.4 Cost functions
The total cost is a summation of the normalized cost functions in multiple aspects. The basic components

follow our previous work described in Miao et al. (2022). Weight factors are set for all aspects. Relatively higher
weight is given to the safety aspect.

3.4.1 historical cost
The historical cost of a node is the minimal known accumulated cost from the starting node. It is determined

in five aspects: path length, sailing time, safety, rule compliance, and smoothness.

The historical path length is the total length of all the trajectories selected. Its cost is expressed as:

Chist
leng =

∑(Li)

Lnomi
(3)

where Li is the length of trajectory segment i and Lnomi is the nominal length.

The historical time is the accumulated sailing time starting from the initial T0. Its cost is expressed as

Chist
time =

(T −T0)

Tnomi
(4)

where Tnomi is the nominal sailing time.

The safety is expressed by the accumulated collision and grounding risks with certain risk assessment models.
Its cost is expressed as the sum of the accumulated collision and grounding risk of all trajectories

Chist
sa f e = ∑Chist

coll,i +∑Chist
grd,i (5)

The collision cost of each trajectory is designed as a piece-wise function. When the distance between the OS
and obstacle is far, the cost is 0; when it is too close, it is infinite; when it is in between, it is modeled as a function
of time and distance as

Chist
coll,i = (

1
|T −T0|

)p · (
dsa f e

di
)q · fRP (6)

where p and q are the time and distance index, respectively, dsa f e is the minimum safety distance, and di is the
distance between the OS and obstacle. The relative posture factor, fRP, is used to estimate the influence of different
encountering postures. The grounding cost consists of the cost from the pre-calculated global costmap and the time
effect

Chist
grd,i = (

1
|T −T0|

)p ·Cm,n
cell (7)



where (m,n) associates the column and row position on a costmap.

The rule-compliance is designed as a penalty function when the rules are violated, expressed as

Chist
rule,i =

{
1 , if rule violated
0 , otherwise (8)

Thus, the historical rule-compliance cost is a summation of each trajectory i

Chist
rule = ∑Chist

rule,i (9)

The smoothness aspect is designed to avoid sharp turnings and accelerations. So an extra cost is introduced
when the heading and speed change too fast.

Chist
smth =

max(ϕ̇−λh,0)
λh

+
max(u̇−λs,0)

λs
(10)

where λh and λs are thresholds of heading and speed change.

3.4.2 Heuristic cost
The heuristic cost is a cost prediction for the rest route to the goal. Good construction of heuristic cost can guide

the expansion direction, shortening the search process. We estimate the heuristic cost considering two aspects: path
length and sailing time.

The heuristic path length cost is defined as:

Cheur
leng =

Lheur

Lnomi
(11)

where the path length is estimated by straight distance to the goal, dgoal , and the angle difference between the
current course and direction to goal α:

Lheur = dgoal · (1+ |sin(
α

2
)|) (12)

The heuristic sailing time cost is defined as:

Cheur
time =

Theur

Tnomi
(13)

Theur =
Lheur

T−T0
Tend−T0

· |uc|+ Tend−T
Tend−T0

· |unomi|
(14)

where the heuristic sailing time is estimated based on the ship’s current speed uc, nominal speed unomi and left path
length Lheur.

3.5 Online re-planning
As a graphic planning method, replanning is used for the real-time execution of collision avoidance. It means

the algorithm will generate a new path based on the current updated situation with a specific frequency to cope
with the changing environment and OS state. Due to limited computational power, the replanning frequency can
not be infinite. A proper frequency needs to be selected according to the specific requirements, such as the vessel’s
maneuverability, and reaction speed according to the current situations. Besides, to avoid the motion oscillation
due to the replanning, the new planned path is only accepted when it is much better than the old one or the
global waypoints change. The replanning is implemented by modifying the “ (nav core)” package of the standard
navigation stack in ROS. Algorithm 2 presents the entire process of the replanning progress.

Algorithm 2 Re-planning of IHA*
1: Pcurrent ←WPglobal
2: while Clocksystem mod 1 do
3: (Pnew,costnew)← IHA∗ (nstart ,ndes)
4: if costnew− costcurrent < threshold or environment changes then
5: Pcurrent ← Pnew
6: end if
7: run path f ollower(Pcurrent)
8: end while



Figure 7: Port of Wageningen Figure 8: Cost map with an inflation layer

4 Experiments & Results
The location for the experiments is selected at the Port of Wageningen (51.9565°, 5.6495°) on the Rhein river

(see in Fig 7). The land area (dark color area) is not accessible, which is regarded as a hard constraint during
sailing. In contrast, the water area (light color area) is the free-access sailing domain of this research. An inflation
layer with 20 meters thickness is added to represent the influence of the water depth. An incremental cost function
of this inflation layer is used to connect the land and water area smoothly (see in Fig 8). Virtual moving obstacles
are used for the experiments in the dynamic environment. AIS data of these moving obstacles were received and
used. The dynamic state of the OS is updated with the GPS.

The global waypoints are manually given in the shore control center. The current leg and next few waypoints
will be sent to the local planner. The local planner will generate a modified intermediate path and associated
control setpoints. We set the nominal speed of the OS to 10 knots and the planning time horizon to 5 minutes with
a 10-second time interval, according to the scope of this research. The initial discrete control options of the CA
algorithm are given as follows during experiments and the associated at and an are used:

• heading change with respect to previous steps: -45, -30, -15, 0, 15, 30, 45 degrees

• speed: 20, 50, 100 percentages of full speed

4.1 Experiment setting
A 7m long unmanned RHIB ‘Ms. Auris’ supported by MARIN was used as our OS. It is equipped with

all essential relevant functions to actuate missions, such as GPS antennas and an onboard computer. During
the experiment, four cases were tested: static map, stationary obstacle, head-on, and overtaken scenarios. For
each case, several global waypoints were pre-set manually and the OS starts from the current position to reach
the waypoints in sequence. Collisions or groundings would occur on purpose with these initial waypoints. The
modified waypoints from the CA algorithm were received in real-time. Then, a line-of-sight (LOS) controller is
used to follow the modified waypoints. The re-planning ensures real-time safety with 1 Hz for all the cases.

The algorithm is first tested in a static map without obstacles. In this case, six waypoints (wp1-wp6) are pre-set,
and a potential grounding is designed between wp1 and wp2. The result is illustrated in Fig 11. In the second case
(Fig 12), a static obstacle, which is a stationary vessel, is injected into a 3-waypoints route to create a potential
collision. A moving obstacle (T-1) sailing from west to east, which has varying speed and heading, is injected to
test the head-on case (Fig 13). For the overtaken case (Fig 14), a moving vessel sailing along the port side of the
OS is set to create a potential collision risk.

4.2 Experiment results
In all cases, a set of modified intermediate waypoints is successfully generated between every two global

waypoints. Own ship is displayed in orange, the obstacle is displayed in dark red, the initial global waypoints are
in light blue, and the modified waypoints are in red color.



Figure 9: MARIN’s RHIB, the ‘Ms. Auris’ Figure 10: computation time box-plot for all cases

The modified waypoints for the first static map case avoid the potential grounding between global waypoints
1 and 2. To make the path shorter, these new waypoints go through the inflation area a bit. The consideration of
multiple aspects causes it. For the other legs (segment between waypoints), the path is modified with intermediate
waypoints based on the updated OS state. In the fixed obstacle case, the generated waypoints guide the OS to avoid
collision with T-1 from the starboard side. The speed is slowed when OS is approaching the stationary ship due
to a slow speed option selected by the algorithm. A sufficient distance to both T-1 and shore is kept to ensure safety.

For two cases with moving obstacles, the states of OS and the obstacle are displayed to show the encountering
details. The color turns from dark to light over time. In the head-on case, the modified waypoints intend to avoid
the port side. Firstly, the waypoint set in purple is associated with the slow-speed obstacle in the beginning. When
OS detects the obstacle has increased speed, a new set of waypoints in tomato color is accepted. So the waypoints
get updated. In the overtaken case, modified waypoints show the avoidance of the coming obstacle and the static
map.

We logged the computation time of each case during the experiments and box-plotted the average time in Fig
10. It can be seen that all the computation time are less than 1 second, which means a solution can be generated
within the desired time. There was no extra latency during experiments.

4.3 Discussions and future research
Overall, the improved hybrid A* with collision velocity check is successfully implemented under the ROS

architecture of MARIN. By specifying the cost functions for the inland waterway context, the collision avoidance
method can generate suitable solutions without collisions and groundings in real-time. The results of the experiments
show that the RHIB avoided the groundings and collisions in all tested cases.

For static environments (static map and obstacles) and moving obstacles, optimal solutions are generated during
each mission based on the designed cost functions. The modified route is the result of balancing multiple aspects:
safety, path length, sailing time, rule compliance, and smoothness. This balance can be seen in some places. E.g.,
the modified waypoints go through the inflation layer a bit to shorten the path distance and sailing time. Moreover,
in the head-on case, the typical starboard rule is not followed - the avoidance action is taken from the port side
due to the limited space left on the starboard. Such design aims to achieve a more comprehensive solution. In
the static obstacle case, the algorithm gives a solution avoiding the obstacle from the starboard, instead of the
port side. One reason is that although a stationary ship was injected as the static obstacle, it was drifting away
from the shore due to the current and wind. The obstacle motion predictor gave a trajectory leaving the shore,
which resulted in the avoidance from starboard. Thus, a modification is needed for the obstacle motion prediction
according to the external environment. Besides, if a port-side avoidance is required according to the rules, we
can modify the solution by correcting the rule-compliance cost. Besides, a higher weight factor of rule compliance
can be set, such that violating rules can have more penalty costs. Such that, rule-compliant solutions can be favored.

By re-planning, new sets of waypoints are constantly generated to ensure real-time collision avoidance. However,
new waypoints will be accepted only when the change of environment is detected, e.g., the new next global
waypoint is received, and obstacle state changes are detected. For cases like the static map and the static obstacle,
only one set of modified waypoints is accepted for each leg. Such a design avoids the common drawback of re-
planning, which causes unnecessary fluctuation of the vessel heading.



Figure 11: Experiment 1: static map

Figure 12: Experiment 2: static obstacle



Figure 13: Experiment 3: head-on case

Figure 14: Experiment 4: overtaken case



The computation time is relatively longer in the static map case. That is due to some global waypoints being
set in the concave areas (i.e., the water area between two land sticks). To search all the possibilities, the algorithm
searched paths also in this blind alley, which costs extra time. That means, for inland waterway scenarios,
different shore geometries impact the search progress and consequently impact the computation speed. One way
for improvement is to change the heuristic, such that a potential ’trap’ can be foreseen.

The motion prediction of OS is simplified using a kinematic ship model in this study. However, it might not
fit other cases, such as the ship with low maneuverability. Thus, testing with more ship types and better motion
models is one of our future works. For the movement prediction of the obstacles, a Kalman filter was used. Better
methods including intention prediction can be selected to give more accurate predictions, which can also be one of
our future works. Besides, the communication between own ship and obstacles can provide vital information, e.g.,
sharing waypoints to each other, for motion prediction.

In addition, more scenarios need to be tested to fully validate this collision avoidance algorithm, such as
crossing and overtaking an obstacle. More complex scenarios, such as multi-obstacle encountering, can be set
to test this algorithm’s performance further. Therefore, further studies are required.

5 Conclusions
In this paper, a real-time collision avoidance method has been implemented based on the improved hybrid

A* with collision velocity check for the inland waterway scenarios. We successfully implemented this algorithm
under the ROS architecture of MARIN. Real-ship experiments were conducted and various scenarios were tested.
From the experiment results, the RHIB successfully avoided the groundings and collisions with the modified
intermediate waypoints. Furthermore, multiple aspects, including safety, path length, sailing time, rule compliance,
and smoothness, are considered, and comprehensive solutions are generated during all the missions.
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