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Abstract—For the functional safety of complex systems such as 

road vehicles, sufficient immunity of the safety-related electronic, 
electrical and programmable electronic systems to the 
anticipated electromagnetic environment is required. Current 
rule-based practices follow established standards for testing the 
immunity and emission performance at vehicle and sub-system 
levels. Nonetheless, with increasingly rapid technological 
changes, confidence may not be sufficient even if the immunity 
test levels or the number of tests is increased. A risk-based EMC 
approach, on the other hand, aims to identify the safety hazards 
due to electromagnetic disturbances and mitigate the associated 
risks to achieve the required confidence level. Traditional tools 
used for risk analysis (such as fault tree analysis, event tree 
analysis and failure mode and effect analysis) may not be 
sufficient as the complexity level increases. In this paper, a 
graphical approach is proposed to enable system visualization as 
well as supporting a comprehensive risk analysis. The possible 
implementation of a system-level analysis is illustrated with 
several methods (e.g. Bayesian networks, Markov random fields 
and fuzzy set theory). These methods could be used to include 
EM risk factors such as spatial location, functional dependence 
etc. in order to estimate the risks associated with EMI-related 
hazards. 
 

Index Terms—EMI, functional safety, risk analysis, Bayesian 
network, Markov random field, fuzzy logic 
 

I. INTRODUCTION 

With the increasing complexity of road vehicles, the range and 
number of hazards which could compromise the safety of road users 
is also increasing. This is evident with the significant rise in the 
number of vehicles recalled and redesigned by vehicle manufacturers 
each year [1]. Electromagnetic disturbances (EMDs) from on-board 
sources (such as noisy components within the vehicle, or passengers’ 
personal devices) as well as off-board external threats (e.g. broadcast 
transmissions, airport radar systems and nearby transmitters) are 
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prominent threats that electromagnetic compatibility (EMC) test 
standards [2] aim to address. Nonetheless, EMC issues have certainly 
been responsible for several significant recalls [1].  

Functional safety and EMC are two different, but related, system 
attributes. The latter concerns the ability of a system to function 
acceptably in its electromagnetic (EM) environment, whereas the 
former aims to limit the safety risks associated with malfunctions of 
the electrical, electronic, programmable electronic components to 
acceptable levels. Functional safety is addressed using a risk-based 
approach requiring hazard and risk analysis of the specific system, 
whereas EMC employs a rule-based approach requiring compliance 
with standardized tests. As electromagnetic interference (EMI) is a 
potential cause of functional safety issues it is considered that there is 
a need to achieve a greater alignment between these domains (e.g. 
[3]–[4]). Currently, however, there is no established methodology to 
estimate, collectively, the EM risks to system functional safety. 
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Take-Home Messages:  
 EMC and functional safety are generally considered 

separately, but have overlapping aspects (EM threats to 
safety-related functions) that need to be better aligned. 

 The impact of EMI on individual system functions, plus 
the additional impact due to functional dependence on 
other system components which are susceptible to EMI, 
need to be considered when estimating the safety risks. 

 Exhaustive testing of EMI threats is not practicable, but 
probabilistic graphical models and fuzzy logic methods 
could facilitate more comprehensive EM risk analyses. 

 

Propulsion system architecture considered for the case study. The sensors, 
actuators, and power control and distribution module (green), as well as the 
power cables (orange) and signal cables (blue) form the system of interest. 
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Replacing the current rule-based EMC approach with a risk-based 
approach will require a comprehensive risk analysis of the system. 
The graphical approach proposed in [5] to help align the various 
aspects of EMC and functional safety needs to be further extended to 
be able to assist the estimation of risk parameters (likelihood and 
consequence of EM impact). In this paper, the risk factors that should 
be considered for the EM risk analysis are given in Section II. This is 
followed by a case study for a very simple vehicle propulsion sub-
system (as shown in the visual summary above), in order to explain 
the use of a graphical model to include the risk factors. 

In Section III, the possible use of probabilistic graphical models 
including Bayesian networks (BN) and Markov random fields 
(MRF), as well as fuzzy set theory, are illustrated. It is considered 
that a combination of these methods could be used to support the 
estimation of the system-level EM risks in complex systems. 

II. GRAPHICAL MODEL FOR RISK ANALYSIS 

A. Steps in EMI Risk Analysis 

Any EMD in the system environment is a potential threat that may 
lead to EMI with undesirable safety consequences. Hence, EM risk 
analysis consists of two main steps; identification of potential hazards 
due to EMI, and estimation of their associated risks. 

In the automotive industry, functional safety is addressed using 
ISO 26262 [6]. A core element of this approach is the hazard and risk 
assessment, which includes the identification of potential causes of 
functional failures that could adversely affect safety-related systems, 
which may include EMI. Currently, it is assumed that compliance 
with vehicle immunity standards will ensure that such EMI issues for 
functional safety are adequately addressed. However, the increasingly 
rapid pace of technological change makes it difficult for EMC 
standards to keep pace with these developments. Thus, it is becoming 
increasingly important to be able to undertake more comprehensive 
analysis of potential EMI-related risks. 

To estimate the EMI risks associated with the identified hazards, it 
is necessary to determine the likelihood of EMI and its impact on the 
safety-related system functions, as the risk is a combination of threat 
likelihood/probability and the severity of impact. For complex 
systems, the correct functioning of multiple components is usually 
required to perform a system function as intended. Hence, it is 
important to take in to account all EM risk factors, such as those 
given in Table 1, when estimating the system-level risks to safety 
functions. Although EMI effects inherently systematic they may also 
manifest as pseudo-random, in that both the threat and the vulnerable 
state, which are potentially time-varying, must be coincident for an 
effect to occur. Furthermore, ageing, corrosion and variations in 
manufacturing and materials introduce further probabilistic aspects.  

The graphical approach introduced in [5] consists of nodes to 
represent the physical components of a system, and arcs/arrows 
connecting them to represent the functional dependencies/interactions 
between components (see Fig. 1). The interface cables, which are 
used for the transmission of electrical signals and power between the 
components, are also considered as nodes in the graphical model. In 
addition to the functional dependence, a graphical model can also 
facilitate the inclusion of other risk factors by assigning each node 
with suitable variables (e.g. assigning each node with local threat 
field levels representing the coupling from an external source to their 
specific spatial locations) corresponding to each of the risk factors 

given in Table 1. Risk parameters related to factors like ageing and 
corrosion can be time-dependent variables. The nodes could also be 
further enriched with information about their spatial location in the 
physical implementation and characteristics as a source or victim. 
The spatial location of components may change before the final 
design is agreed. Hence, the node variables of the graphical model 
would also need to be dynamically changed during the risk analysis. 

B. Case Study: Propulsion System 

A graphical model for the propulsion system architecture given in 
the visual summary consists of nodes representing a sensor C1, a 
controller C2, an actuator C3, and interface cables C4–C7 as shown 
in Fig. 1. Since, EMI is a common cause for functional deviation, 
there is a likelihood that more than one component involved in a 
system function are affected. In such cases, the degree of impact can 
be much higher, which can be identified in the early stages of system 
development by considering functional dependence as a risk factor in 
the proposed graphical model. Functional dependence is mapped in 
the graphical model with arrows, which can be useful when 
estimating the overall risk to system functions that are carried out by 
multiple functions. For instance, the arcs that terminate on node C2, 
originating from nodes C5 and C7, represent the functional 
dependence of the power controller on electrical power and demand 
data delivered via the respective cables. Such dependencies on other 
components will change the degree of EMI impact and, hence, the 
severity of the consequence. Determining the functional deviation 
due to EMI is also very difficult, since each component function 
might have several functional states (for example, if we consider C7 
to deliver a 6-bit code to C2, there are 26 possible ways of EMI 
having an impact on C7, each with varying degree).  

   

Fig. 1. Graphical model of the system for the propulsion system given in 
visual summary. 
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Table 1: The list of component level risk factors to be considered to 
determine the risk parameters for a system-level EM risk analysis.   

EM Risk Factors Risk Parameters  
Coupling paths (conducted and radiated) Likelihood of EMI  
Spatial location of safety-related components 
within the system 

Likelihood and impact 
of EMI 

Functional dependence/interactions with other 
components 

Impact of EMI 

Change in EM properties with ageing, corrosion 
and other environmental effects   
 

Likelihood and impact 
of EMI 
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For a comprehensive risk analysis, the likelihood of intolerable 
functional deviation is required. Methods that are discussed in the 
next section could be used combine limited data and expert 
judgement in order to estimate the overall likelihood at system level. 

III. METHODS FOR RISK ANALYSIS  

A. Bayesian Networks 

BN are directed acyclic graphs, with nodes representing any 
variable, while the arcs (arrows) inter-connecting pairs of nodes 
specify the conditional dependence between them in a probabilistic, 
deterministic or functional sense. In a BN, each node is connected to 
at least one other node. If (u, v) is an arc from node u to node v, then 
the node u is a parent of v and this is denoted as u ∈ pa(v), where, 
pa(v) denotes the set of parents of node v in the graph. For example, 
in the graph shown in Fig. 2(a), the direction of the connecting arc 
between N1 and N2 indicates that N1 is a parent of N2, and the set of 
parent nodes of N2 is given as pa(N2) = {N1, N3}. 

The BN analysis is possible when there is a causal relationship 
between two nodes. For EM risk analysis, the risk factors listed in 
Table 1 can be considered as the causal factors. From Table 1, if we 
consider functional dependence between components as a causal 
factor to determine the probability of the degree of EMI impact, we 
get a graph similar to Fig. 2(b). The arcs in Fig. 2 denote the 
functional dependence between nodes. In Fig 2(b), the power 
controller C2 receives the input power supply through the interface 
cable C5, making C2 functionally dependent on C5. 

To demonstrate the use of BN in EM risk analysis, let us consider 
the sub-graph shown in Fig. 2(b), consisting of node C2, its child 
nodes (C4 and C6) and its parent nodes (C5 and C7). In this case, in 
addition to the individual EMI impact on functional performance of 
C2, EMI impact on the parents of C2 should also be considered. So, 
if we assign a variable to denote the EM susceptibility of each node, 
then the conditional probability measure P(C2 | pa(C2)), denoting 
“the probability of deviation of the safety function performed by node 
C2 due to EMI, given its functional dependence on its parent nodes 
pa(C2)”, can be determined using [7]: 

P(C2 | pa(C2)) = P(C2 ∩ C5 ∩ C7)  / P(C5 ∩ C7) (1) 

where the terms P(C2 ∩ C5 ∩ C7) and P(C5 ∩ C7) represent joint 
probability distributions (JPD) over their arguments.  

If all of the nodes in Fig. 2(b) are responsible for a system-level 
function, then the overall probability for the functional deviation at 
system-level can be determined from their JPD, which in this 
example can be determined using the factorization [8]: 

     P(C2 ∩ C4 ∩ C5 ∩ C6 ∩ C7) =  
         P(C5)·P(C7)·P(C2 | C5 ∩ C7)·P(C4 | C2)·P(C6 | C2) 

(2) 

where P(C5) and P(C7) are the independent (also called marginal) 
probability measures for the functional deviation due to EMI in nodes 
C5 and C7 (respectively), P(C5 ∩ C7) is the JPD  for C5 and C7, and 
the terms P(C4 | C2) and P(C6 | C2) are the conditional probabilities 
for the functional deviation due to EMI in nodes C4 and C6, 
respectively, given C2. 

The application of a BN to determine a probability measure for the 
vulnerability of a building installation to intentional EMI (i.e. a 
cybersecurity issue) is described in [9]–[10], based on EM topolgy, 
fault tree analysis and event tree analysis. However, if there is a 
feedback loop (such as C2→C4→C1→C7→C2 in Fig. 1), Bayesian 
inference cannot be applied, as BNs are invalid for cyclic graphs. 
However, other graphical methods, such as the Markov random fields 
described below, can be employed when cyclic loops are present. 

B. Markov Random Fields 

A Markov random field (MRF), also called as a Markov network 
or a Gibbs distribution, is analogous to a BN, except that it is an 
undirected graph. The nodes in an MRF graph have a simple linked 
(u⸺v) relationship with all their connected nodes (as shown in Fig. 
3), instead of the parent-child (u→v) relationship of BN. The 
advantage of MRF over BN for a performing a system level risk 
analysis is that, with MRF, cyclic graphs can be accommodated. 

In MRF, the factorisation of probability distribution for the 
undirected graphical model is according to structures called cliques 
of the graph [8]. A clique q is a subset of the nodes in a graph that are 
fully connected (i.e. all nodes in the subset are linked to each other), 
and the set of maximal cliques, Q contains the cliques with the 
highest number of nodes.  

A sub-graph of the MRF representing the case study (i.e. the graph 
of Fig. 1 but with undirected arcs replacing the directed arrows) is 
shown in Fig. 3. This has N = 4 nodes and four maximal cliques (all 
2-node cliques only). Each of the cliques is associated with a 
compatibility function, 𝜓q : (⊗n ∈ q xn) → ℝ+, where (⊗n ∈ q xn) denotes 
the Cartesian product of the state spaces xn, corresponding to each 

variable of node n  q and → ℝ+ indicates that the results are positive 
real numbers. The compatibility functions are arbitrary non-negative 
functions (commonly exponentials) that define the interaction 
between the variables within the clique. If each of the N node 
variables has K states, then the JPD for Fig. 3 may be obtained from: 

𝑃(C1 ∩ C2 ∩ C4 ∩ C7) = 𝜓 𝑥 ∈

∈

𝜓 𝑥 ∈

∈

 

 

(3) 

 The compatibility functions 𝜓Q need not have any obvious or 

   
Fig. 2. (a) An example of a BN; (b) Sub-graph from Fig.1 to represent the 
dependence/interactions of C2 with other components of the system in the 
form of a BN. 

C5 C2

C4 C7

C6

(b)

N2N1 N3

(a)

   
Fig. 3. The looped sub-graph from the case study model, represented here 
using MRF. 
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direct relation to marginal or conditional probabilities [8], as the 
child-parent sets in BN have. However, without the causal 
relationship, the risk factors such as functional dependence cannot be 
visualized directly from the graphical representation. 

C. Fuzzy Set Theory 

The application of fuzzy logic or fuzzy sets is widely reported (e.g. 
[11]) as it is very useful tool for risk assessment and decision making. 
This method is used when the system knowledge/response involves 
uncertainty, imprecise values/boundaries, scarce and limited datasets. 
Unlike the two methods discussed above, a fuzzy variable is 
associated with an uncertain possibility distribution instead of a 
probability distribution. So, this method is advantageous as the 
system knowledge for many complex systems may be represented in 
a wide range of formats and is often imprecise. 

To illustrate the concept of fuzzy logic in EM risk analysis terms, 
consider the proposition “the probability C2 being affected by EMI is 
most likely to be up to 20%, but certainly not more than 60%”. This 
can be described by a membership function of the form: 

µ(u) = 1 – S(u; , , ) (4) 

where u represents the approximate probability value of C2 being 
affected by EMI and the function S(u; α, β, γ) is defined [12] by: 

𝑆(𝑢; 𝛼, 𝛽, 𝛾) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0

2
{𝑢 −  𝛼} 

{𝛾 −  𝛼}

1 − 2
{(𝑢 −  𝛾}

{𝛾 −  𝛼}
1

   

for 𝑢 ≤ 𝛼

     for 𝛼 ≤ 𝑢 ≤  𝛽

    for 𝛽 ≤ 𝑢 ≤ 𝛾

for 𝑢 ≥ 𝛾

 (5) 

The parameters  and  are constants assigned to define the lower 
and upper limits (respectively) of the fuzzy distribution (to be 
estimated by the domain expert), and β defines a crossover point, set 

here such that S (u; α, β, γ) = 0.5. Setting  = 0.2,  = 0.4 and  = 0.6, 
the function µ(u) has the form illustrated by the blue line shown in 
Fig. 4, which reflects the proposition above. 

Although in the example above the membership function is 
illustrated using a particular form, other functions (such as triangular, 
trapezoidal, Gaussian etc.) could be used to represent different 
propositions expressed in other formats. For example, the triangular 
function shown by the orange line in Fig. 4 could be used to represent 
a proposition of the form “the probability C2 being affected by EMI 
is most likely to be around 40%, but certainly not less than 20% and 

not more than 60%”. Alternatively, a Gaussian function could be 
used for propositions that do not specify an interval with hard limits. 

A possible method for risk analysis by using fuzzy set theory and 
expert knowledge with FTA through BN modelling is discussed in 
[13]. A similar approach, combining two or more methods with the 
graphical model, could also be employed to enable EM risk analysis 
for functional safety. 

IV. CONCLUSION 

In general, reducing the EMI risks associated with safety-related 
malfunctions is done by implementing safety mechanisms, and by 
applying techniques and measures suggested by guides and standards, 
such as shielding, filtering, grounding etc. However, adequate 
confidence for the overall safety risk to be acceptable, can be 
achieved only by performing a comprehensive risk analysis. The 
graphical model introduced in this report is aimed to demonstrate the 
risk due to EMD on the system, by associating EMI impact on the 
functions and interactions between components of the system. 
Combinations of the methods discussed in this paper with the 
graphical model are being further developed for the estimation of the 
risk parameters associated with identified hazards. As this graphical 
approach also enables a better system visualization, it also has the 
capability to support the entire risk management process. 

As future work, to demonstrate and validate the techniques 
discussed in this paper for vehicle-level EM risk estimation, methods 
for estimating the risk parameters (probability and degree of EMI 
impact) will be determined using one or more suitable methods: 
These may include system knowledge and domain expertise to 
support the selection of risk parameters at the time of analysis, as 
well as relevant data (possibly statistical) obtained from experiments 
or EM simulations. 
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Fig. 4. Possibility measure for the probability of C2 being affected by EMI,
based on membership functions reflecting imprecise domain knowledge.  


