
Towards safety monitoring of ML-based perception
tasks of autonomous systems

Raul S. Ferreira
LAAS-CNRS, Universite de Toulouse, France

rsenaferre@laas.fr

Abstract—Machine learning (ML) provides no guarantee of
safe operation in safety-critical systems such as autonomous
vehicles. ML decisions are based on data that tends to represent
a partial and imprecise knowledge of the environment. Such
probabilistic models can output wrong decisions even with 99%
of confidence, potentially leading to catastrophic consequences.
Moreover, modern ML algorithms such as deep neural networks
(DNN) have a high level of uncertainty in their decisions, and
their outcomes are not easily explainable. Therefore, a fault
tolerance mechanism, such as a safety monitor (SM), should be
applied to guarantee the property correctness of these systems.
However, applying an SM for ML components can be complex in
terms of detection and reaction. Thus, aiming at dealing with this
challenging task, this work presents a benchmark architecture
for testing ML components with SM, and the current work for
dealing with specific ML threats. We also highlight the main
issues regarding monitoring ML in safety-critical environments.

Index Terms—Dependability, machine learning, autonomous
vehicles

I. INTRODUCTION

ML is widely applied for performing important autonomous
tasks in safety-critical domains such as autonomous vehicles
or robotics. Such tasks include perception, navigation, and
control. The reason is the flexibility of using ML in unmodeled
environments, the increasing amount of labeled data, and
computational power. However, an ML model takes decisions
based on trained past data. This ML model is validated
by analyzing specific metrics, for instance, the discrepancy
between the predicted values and the true answers (labels). If
these results are satisfactory, it goes to production. However,
the adoption of ML for safety-critical systems can be hindered
by some important drawbacks of these algorithms.

First, these algorithms are based on data, and the available
data tends to be incomplete regarding the environment com-
plexity, classes, and corner cases existent in real-world data.
Second, an ML model tends to learn incomplete relationships
on this data. That is, it is not capable of correctly generalizing
real-world data just using the data available during training.
Third, due to the aforementioned limitations on data and in
the ML model, it can wrongly predict a class even with 100%
of confidence [1]. Finally, these decisions are hard to interpret,
especially modern ML algorithms such as DNNs, making them
a black-box software. These drawbacks are challenging for
verification and monitoring of ML.

The ML community researches for decades on how to
increase the robustness of these algorithms by making them

detecting and adapting to the different ML threats at runtime.
There are several examples applied to novelty classes [2],
anomalies [3], distributional-shift (concept-drift) [4], adver-
sarial examples [5], and so on. However, despite the huge
advances in the field, such algorithms cannot avoid the fact that
even performing correctly 99% of the time they still cannot
guarantee safety. That is, this high-performance algorithm will
fail 1% of the time during operation, and it is enough to lead
to several and serious hazards. This highlights, even more,
the importance of redundant techniques for monitoring these
algorithms during operation (runtime).

A possible approach for monitoring ML decisions at runtime
is applying a safety monitor (SM) [6] as a part of the
runtime verification mechanism. This fault-tolerance approach
is widespread in safety-critical domains [7]. The SM is re-
sponsible for maintaining the system in a safe state despite
the occurrence of hazardous situations. It is usually composed
of a detection mechanism and a recovery system. However,
for complex applications where ML is required to provide
solutions, designing an SM can be intractable due to the need
to verify millions or even billions of parameters generated
by the ML model. Besides, SM might face other issues
such as to define detection mechanisms for this ML model.
Therefore, the focus of this work is to develop efficient SM
for ML components. In this thesis, we adopt the dependability
vocabulary (threats, faults...) [7] applied to ML issues.

This research tries to answer four research questions (RQ):
1) What type of ML threats can be detected?
2) How to monitor ML threats at runtime?
3) How to benchmark different runtime monitors?
4) How to intervene after the detection?
This thesis started in March 2019 and is both conceptual and

experimental. It includes two industrial collaboration involving
the study of runtime monitoring perception tasks for au-
tonomous vehicles (AV). Therefore, in Section II we highlight
the current challenges linked to the aforementioned RQs. In
Section III, we present current related works to address these
challenges. In Section IV, we propose possible solutions that
deal with the drawbacks of the previous methods. Finally, in
Section V, we conclude the paper and describe the work plan.

II. CHALLENGES

In this section, we frame the research domain and explain
the challenges for answering each RQ mentioned earlier.



1) Identification of ML threats for specific tasks (RQ1):
RQ1 focuses on identifying the domain, its specific tasks along
with the observable data, and identify the possible threats.
ML threats can be observed during two different steps in
the software life cycle: during development or interaction.
Development faults happen during the design and training
of the ML algorithm, while interaction faults happen during
runtime. Possible threats during the design phase include
security vulnerabilities, hidden bugs, bad model maintenance,
specification mismatch, data incompleteness, white noise,
bad requirements engineering, inadequate ML development,
and insufficient test coverage. Regarding the runtime phase,
possible threats include distributional shift, anomalies, novel
classes, adversarial inputs, and noisy inputs. Besides, threats
are also dependent on the domain and its tasks, along with the
observable data applied to this task.

2) Identification of runtime monitoring approaches (RQ2):
Techniques for detecting a hazardous situation based on func-
tional specifications are usually applied for traditional systems
and some of them [8], [9] can be applied to monitor specific
ML threats. On the other hand, the use of techniques based
on data became very popular, such as pattern classification
[2], feature learning [10], neuron matching [11], instance-to-
distribution verification [12], distribution-to-distribution veri-
fication [13] and so on. Reacting to an ML decision depends
on its ability to detect and identify possible threats in the ML
component. Thus, RQ2 focuses on understanding and mapping
which approaches can be applied for monitoring threats for a
perception task. Moreover, RQ2 aims at applying and com-
bining these approaches while minimizing their drawbacks.

3) A framework for benchmarking SM (RQ3): RQ3 focuses
on constructing a benchmark architecture following standard
guidelines. There is extensive literature regarding how to
perform dependability benchmarks for traditional systems, and
for benchmarking ML algorithms. However, there is a lack in
the literature on how to benchmark a system which both work
together in the same system. There is also a lack of formalism
regarding which metrics should be considered when testing
fault tolerance mechanisms for ML models. Besides, deter-
mine which methods should be used as baselines, and upper
bound, for these experiments is another topic not well-defined
in the literature. Finally, such a framework for benchmarking
SM needs to allow that the fault templates for each ML threat
are parameterized, and the possibility of combining mutated
datasets. Therefore, RQ3 aims at researching these important
methodological challenges and proposing an experimental
architecture and methodology.

4) Modeling reactions according to specific threats (RQ4):
Another challenging task for SM is to determine which
strategies to use for better reacting when a threat is detected.
The reaction is as important as the detection, and the RQ4
is focused on finding new ways to do it since traditional
methods for generating safety rules tend to be infeasible due
to the complexity of the ML algorithm and the scenario [14].
Besides, several reactions can be applied in the perception
module (e.g. changing the ML decision) or in the control

module (e.g. decelerating the car). It poses another challenge
about which intervention is better to use, in which part of the
system should be applied to this intervention, and so on.

III. RELATED WORKS

SM for ML components is a technique with a growing
interest in the autonomous systems field, and the current
literature proposes two different approaches to do it:

A. SM based on a functional specification

This approach is generally based on a physical model of the
system or the environment, and on properties they should guar-
antee. Some techniques use a rule-based approach for verifying
the safety of ML components, considering this component
as a black-box. For example, safety rules can be applied to
verify if a vehicle can completely stop before reaching an
obstacle ahead [9], or to trigger an intervention for avoiding
a collision when an ego vehicle is approaching a leading
vehicle [14]. In both cases, external (exteroceptive) sensors,
such as distance sensors, are observed along with some internal
(proprioceptive) sensors, such as speed, in order to evaluate
if a safety property will be violated. Such techniques have
the advantage of automatically generate safety strategies [6].
However, analyzing the ML as a black box can be considered
as a drawback since accessing a certain level of properties
that lead an ML to give a particular decision is important for
SM in complex scenarios. Besides, these techniques tend to
be infeasible in a complex scenario [14].

Another model-based technique is the use of code asser-
tions, also called model assertions [8]. This technique is
an adaptation of the classical program assertions as a way
to monitor and improve ML models. The idea is to verify
properties in the program logic in order to point possible
failures. For example, monitoring temporal stability during
operation by verifying if the DNN output regarding an object is
flickering in and flickering out in the camera, which indicates
a possible failure. Even these techniques can be applied during
design and operation, it alone cannot guarantee that a DNN
decision is safe. The reason is that, for some corner cases, ML
outputs wrong decisions that cannot be verified by inspecting
the code logic or the sensor values and lead to hazards. Such
corner cases come from regions of uncertainty [15].

B. SM based on training data

This approach is usually purely based on data instead of
using a physical model for building the solution. For example,
one approach is to monitor the neuron patterns observed
from the layers of the DNN. For instance, an SM can monitor
the values in the last layer of a DNN [16], verifying the
confidence level of the decision. However, it is not reliable
since DNNs can output a wrong decision even with a high
level of confidence. Cheng et al [17] suggest comparing the
recorded patterns of the DNN activation functions during the
training with the ones related to the inputs during runtime.
After the standard training process, a runtime monitor is
created by feeding the training data to the network again



in order to store the neuron on-off activation patterns using
binary decision diagrams (BDD). During runtime, the monitor
rejects the decision made by the network if the current current
BDD pattern is not similar to the ones stored in the monitor
during the training. One of the advantages is that it partially
addresses the novelty class problem by signaling variations in
the patterns of the DNN activation functions. However, choos-
ing a good threshold for determining which variation could be
signaled as a novel class can be difficult, varying between the
datasets. Besides, the memory required for constructing the
BDD grows quickly in respect of the DNN’s size.

To overcome the aforementioned problems Henzinger et al
[11] propose to verify neuron activation patterns values but
using a 2D projection instead of a BDD. This projection is an
abstraction box built by taking the maximum and minimum
values of activation function values during training. During
runtime, it inspects if the output of an activation function, after
a new input pass through it, falls inside of this abstraction box.
If not, it raises an alarm considering this input as a novel input.
By doing that, the authors reduced the memory issue and speed
up the construction and detection. However, 2D projections
tend to loose information when applied to high dimensional
data, impacting the accuracy of the detection. Moreover,
applying linear projections to nonlinear activation functions
tends to impact negatively in the detection performance.

Another approach is to monitor the DNN inputs based on
a radius distance threshold calibrated during the training [18].
The idea is to perturb the DNN inputs, observe the true answer,
and determining how large is the distance regarding the DNN
decisions. By doing that, the authors observed that the radius
distance of a DNN that correctly classified the perturbed inputs
are much larger than that ones that misclassified such inputs
after a perturbation. The authors uses this intuition to protect
the DNN decisions from adversarial attacks. The advantage of
this approach is that it does not need to inspect the internals of
the DNN. The drawback is that it tends to be biased to the data
used during the training. In the next section, we propose some
directions for answering RQs in Section I while overcoming
the challenges in Section II.

IV. PROPOSED METHODS

For RQ1, we chose to focus on perception tasks in the
domain of autonomous vehicles (AV) due to the importance of
this task in such a safety-critical domain. The observable data
for this task is mostly collected from exteroceptive sensors
such as cameras, and LiDAR [19], and the outputs and
intermediate values of ML algorithms. Hence, in this thesis,
we focus on the runtime monitoring of ML components when
performing image classification tasks in AV. For RQ2, we
chose to build a combined approach using techniques both
from functional specification and based on data. This approach
is capable of inspecting not just the observable parameters of
the DNN that impact on its decision such as input features,
neuron patterns, but also other properties of the system. The
reason is that the ability to detect errors or unsafe behaviors
before a hazardous condition is connected to the perception

of a safety model. Thus, a safety model needs to be able to
extract fine-grained information from the ML component to
increase its perception ability.

Regarding RQ3, this thesis compares different SM tech-
niques by using an experimental framework based on the
FARM [20] methodology. This methodology is composed of a
fault load for creating the mutated datasets according to a spe-
cific ML threat; a workload specific for the domain; readouts,
or raw outputs, generated from the tests; and measurements
applied on these readouts. Hence, as illustrated in Figure 1,
the final architecture for benchmark each SM for a specific
ML threat is divided into three modules: dataset generation,
system testing, and evaluation. That is, the dataset generation

Fig. 1. Benchmark architecture.

module produces the mutated datasets containing ML threats,
for example, adversarial images. After it, the system testing
module is responsible for performing tests using the ML-based
along with the SM on these generated datasets. Finally, the
evaluation module produces the final evaluation of the system
using the outputs produced by the tests.

For RQ4, there are promising alternatives for reacting when
a detection is made. For example, using a modified simplex ar-
chitecture [21] with two controllers: a high-performance and a
verified-safe controller. In this architecture, the first controller
uses ML, while the second one is based on a safety model.
When the decisions of the first controller are potentially unsafe
within restricted conditions, the control goes to the second
controller. In this architecture, there is an adaptation module
responsible for updating the high-performance controller and
make it reliable against previously seen unsafe decisions.
Hence, it creates a reverse switching mechanism that is able
to give control back to the high-performance controller.

Another alternative is to synthesize safety rules just for
critical counterexamples [15]. That is, inputs that can lead
to a failure of an entire system when the ML gives a wrong
decision (e.g. an ML component wrongly missed an obstacle,
giving no time to react and to avoid a crash). By doing that, it
is also possible to find the inputs that are only safe if the ML
decision is correct (e.g. an ML component correctly identifies
an obstacle with sufficient time to react and to avoid a crash).



V. CONCLUSIONS AND WORK PLAN

The use of ML by the automotive industry is quickly
increasing due to its flexibility to learn from data and its ability
to perform complex tasks such as perception. Guaranteeing
that these autonomous tasks output correct and reliable deci-
sions are an open challenge in the dependability and ML fields.
Since each ML threat has a specific characteristic, we believe
that an ensemble of specialized SM could achieve better results
than a single SM.

This research aims at contributing to the field of dependabil-
ity by giving robust research directions on how to monitor the
main threats that an ML-based perception system can face at
runtime. Despite several works on algorithm robustness, there
are just a few works about runtime monitoring ML, which
highlights the importance of this research. Another expected
contribution is to provide research directions regarding the
methodology of benchmarking SM along with ML, a subject
not well-explored in the literature.

This three-year thesis started in March 2019, and it has the
following work plan:

1st year: Literature review and taxonomy building
• What are the major threats for trusting in ML, from pre-

processing up to production, and maintenance?
• What are the dependability means applied for monitoring

traditional systems, and ML-based systems? What are the
differences between them?

• What are the current solutions for monitoring ML tasks
in a safety-critical domain (autonomous vehicles)?

• Preliminary taxonomy on approaches for detecting ML
threats at runtime.

2nd year: Benchmarking
• Developing and selecting a set of SM candidates.
• Experiments comparing our SM for novelty class detec-

tion with related works.
• Secondment at Fraunhofer (DE) institute to combine

techniques of uncertainty estimation to our SM.
• Experiments comparing our SM for detection of distribu-

tional shift with related works.
• Experiments comparing our SM for detection of adver-

sarial inputs with related works.
3rd year: Consolidating the proposal
• Secondment at Jaguar/Land Rover (UK) for developing

and testing a combination of SM in a more realistic
scenario.

• Experiments comparing our combined SM with related
works in a scenario with multiple types of threats.

• Finalization of the generic framework to monitor and
handle safety of autonomous systems.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s EU Framework Programme for Research and Inno-
vation Horizon 2020. Grant Agreement: 812,788. The author
thanks Jérémie Guiochet, Hélène Waeselynck, Mario Trapp,
and Harita Joshi for their guidance during this PhD’s 1st year.

REFERENCES

[1] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in International
conference on machine learning (ICML), New York, United States, 2016,
pp. 1050–1059.

[2] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversarially
learned one-class classifier for novelty detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 3379–3388.

[3] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft, “Im-
age anomaly detection with generative adversarial networks,” in Joint
european conference on machine learning and knowledge discovery in
databases. Springer, 2018, pp. 3–17.

[4] R. S. Ferreira, G. Zimbrão, and L. G. Alvim, “Amanda: Semi-supervised
density-based adaptive model for non-stationary data with extreme
verification latency,” Information Sciences, vol. 488, pp. 219–237, 2019.

[5] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 9, pp. 2805–2824, 2019.

[6] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy, and
L. Masson, “SMOF: A safety monitoring framework for autonomous
systems,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 48, no. 5, pp. 702–715, 2018.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[8] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model as-
sertions for monitoring and improving ML model,” arXiv preprint
arXiv:2003.01668, 2020.

[9] U. Ozguner, C. Stiller, and K. Redmill, “Systems for safety and
autonomous behavior in cars: The darpa grand challenge experience,”
Proceedings of the IEEE, vol. 95, no. 2, pp. 397–412, 2007.

[10] A. Gupta and L. Carlone, “Online monitoring for neural net-
work based monocular pedestrian pose estimation,” arXiv preprint
arXiv:2005.05451, 2020.

[11] T. A. Henzinger, A. Lukina, and C. Schilling, “Outside the box:
Abstraction-based monitoring of neural networks,” arXiv preprint
arXiv:1911.09032, 2019.

[12] S. Matiz and K. E. Barner, “Inductive conformal predictor for con-
volutional neural networks: Applications to active learning for image
classification,” Pattern Recognition, vol. 90, pp. 172–182, 2019.

[13] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution de-
composition for match density estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6044–6053.

[14] F. Al-Khoury, “Safety of machine learning systems in autonomous
driving,” Master’s thesis, KTH Royal Institute of Technology School
of Industrial Engineering and Management, Stockholm, Sweden, 2017.

[15] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” Journal of
Automated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[16] D. Hendrycks and K. Gimpel, “A baseline for detecting
misclassified and out-of-distribution examples in neural net-
works,” CoRR, vol. abs/1610.02136, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02136

[17] C.-H. Cheng, G. Nührenberg, and H. Yasuoka, “Runtime monitoring
neuron activation patterns,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Florence, Italy. IEEE, 2019,
pp. 300–303.

[18] J. Liu, L. Chen, A. Mine, and J. Wang, “Input validation for neural
networks via runtime local robustness verification,” arXiv preprint
arXiv:2002.03339, 2020.

[19] X. Meng, H. Wang, and B. Liu, “A robust vehicle localization approach
based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles,”
Sensors, vol. 17, no. 9, p. 2140, 2017.

[20] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation:
A methodology and some applications,” IEEE Transactions on software
engineering, vol. 16, no. 2, pp. 166–182, 1990.

[21] D. Phan, N. Paoletti, R. Grosu, N. Jansen, S. A. Smolka, and S. D.
Stoller, “Neural simplex architecture,” 2019.


