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Abstract—Environment perception constitutes a foundational
block for autonomous systems such as automated driving systems.
Enhancing such features is imperative to breach the barrier
of complex environments such as urban scenarios. Occlusions,
appearances, and disappearances are a few of the difficulties
traditional tracking algorithms may face in an urban context
that hinders their performance. Moreover, approaches that deal
with the data association problem are still physically limited
by the point-of-view of the ego vehicle. In order to address
these issues, we propose in this position paper a framework to
merge different perspectives enabling collaborative perception
and thus to enhance the dependability of the environment
perception of automated vehicles in complex scenarios. To this
end, each participant, i.e., automated vehicles and infrastructure,
sends their perception results to the framework. A perception
result includes Bayesian Occupancy Filter providing probabilistic
information about object positions. Moreover, the results might
include an additional classification of the objects, enabling us
to optimize predicting future trajectories of the objects, which
is particularly important for non-automated participants such
as human-driven cars or pedestrians. The framework facilitates
a more complete and clarified view of the context to enhance
decision-making of the individual vehicles.

Index Terms—Collaborative perception, Automated driving
system, Bayesian occupancy filter

I. INTRODUCTION

To enable an automated vehicle to move safely, it must have
a complete navigation system. Navigation is responsible for
carrying out motion planning that guides the car from an origin
to a destination and ensures safety by detecting and avoiding
obstacles. During this whole process, the car must also know
its location in the world and control its movement. To that
end, a central component of the vehicle’s navigation systems
is its perception chain.

The potential of faults in perception chains is of great inter-
est since it can directly endanger passengers and the vehicle’s
surrounding. Even though there have been improvements in the
reliability of perception for ADS, these systems are still flawed
and subject to faults, mainly when submitted to complex
scenarios such as a crossing in urban areas. Therefore, relying
on single ego-perspective sensors might prove insufficient to
assure the proper behaviour of the system.

Through communication, future ADS might be able to share
their single perception of the environment and greatly enhance
their perception range and accuracy. More precisely, the ego-
vehicle can exchange its state and sensor information and
receive those from other vehicles and the traffic infrastructure,
thus enhancing its local world model. Therefore, the collab-
orative perception can be view as a high-order sensor fusion
where each participant works as a virtual sensor providing data
to one another.

In this paper, we propose a probabilistic framework enabling
collaborative perception. To this end, the framework uses the
results of different vehicles and the infrastructure’s percep-
tion chain for compiling a more complete and more reliable
integrated world model as the diverse sources use different
hardware and software and see the scene from different
perspectives. The fusion of the single sources is based upon
Bayesian Occupancy Filters. [1]. As an extension to occupancy
grids, which do not contain classification information on
detected obstacles, the framework additionally uses object
lists from single sources facilitating the classification and
tracking of objects. Using these two types of information,
the framework can associate behavior models for predicting
a probabilistic future trajectory-space, e.g., to predict which
way a pedestrian will go in the near future. Being integrated
as a service of the roadside infrastructure, the framework can
additionally be tailored to the concrete traffic routing, such
as to a concrete crossing, so that additional semantic and
statistical information for the local area can be incorporated,
leading to more accurate results compared to comparably
generic assumptions and information used by the ego-vehicles.

This paper is structured as follows: In Section II, the related
work in collaborative perception is summarized, and research
problems are formulated. Section III presents the vision of
the framework and explains its components. Finally, section
IV discusses the current state of the proposed framework,
addresses concluding remarks, and gives an outlook on future
work.



II. RELATED WORK

To foster this approach, we base our work on a panel of
previous work developed in various areas. Firstly, the approach
of evaluating complex scenarios has been addressed for a
long time in the field of autonomous vehicles. Once the
vehicle is outside of a controlled environment - even with
only a minor variance of participants and possible actions - the
tracking of the environment becomes difficult. The problem of
effective data association, i.e., the classification and tracking
of detected objects and thus identifying appropriately targeted
measures in complex scenarios such as crossings in the urban
environment, remains a challenge. Moreover, it is notable
that the interaction of non-connected participants with the
automated and connected vehicles is an essential factor in
building an effective system capable of navigating in scenarios
where this is required.

From the cooperative perception community, the core of
the work has been developed throughout the last decade. First
approaches have a firm root in the communication domain with
a first work [2] using VANETS to exchange raw image data in
order to create a see-through system as an Advanced Driver-
Assistance System (ADAS) in order to facilitate overtaking
maneuvers. Still, on the level of communication, the German
project Ko-PER investigated the communication requirements
for collaborative perception (CP) such as transmission range
and latency [3]. Extending the initial findings, the project also
investigated techniques for temporal and spatial alignment of
the messages exchanged between vehicles [4].

The author in [5] investigated the impact of CP on the con-
trol and motion planning of the vehicle. The results achieved
with a see-through collision warning system showed that CP
improved the safety and controllability of the vehicle. The
work was further extended to address delay composition in
the exchange between messages among vehicles [6].

From a computer vision perspective, several studies have
been developed. The Ko-HAF project [7] investigated the
safe identification of traffic signs and traffic disruption - the
project built on sharing information among vehicles in order
to optimize traffic flow and enhance safety.

At the sensor level, Chen et al. [8] proposed a low-level
fusion architecture in order to unify different vehicles’ point
clouds for enhancing object detection accuracy. Extending its
previous work, a feature-level fusion was proposed to compare
the performance of the different levels. The work shows in
both cases that the aforementioned data fusion enhances the
number of objects detected by the vehicles. Recently, Arnold et
al. [9] proposed a fusion architecture based on sensors installed
in the infrastructure in order to provide enriched world models
to vehicles in the infrastructure’s range. This approach opposes
the one in [8], which had the fusion executed at the vehicle
level.

Both of the approaches mentioned above show improved
results against individual perception. Nonetheless, by exe-
cuting the merger inside the vehicles, [8] introduces a high
burden and unnecessary redundant computations. As for [9],

by not using the available perception in vehicles, it creates
the necessity for permanent and reliable infrastructure sensors.
Moreover, both solutions rely on artificial intelligence object
detection algorithms, which are susceptible to unpredictable
behaviour. This position paper, proposes an intermediate so-
lution by profiting from both infrastructure and vehicle per-
ception capabilities by sharing intermediate features through
Bayesian Occupancy Filter (BOF). By these means, the pro-
posed framework shall provide as a contribution:

• An extension of the classical Bayesian Occupancy Filter
to merge different perspectives receiving inputs from
different sources, thus enlarging the perception capability
of the collective.

• When available, use classification inputs coming in paral-
lel to the BOF to optimize path prediction of the observed
objects and, as a result, provide a more precise assessment
of the context.

III. PROPOSED FRAMEWORK
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Figure 1. Framework overview

Sharing information among autonomous vehicles seems
to be one way to enhance their perception capabilities and
consequently minimize the risk associated with context mis-
representations. In this section, we present our vision of a
framework that integrates perception of different ADS within
a local area as well as infrastructure-based perception. We
present its components and how they interact within the
framework as a means to assure an enhanced world model.
The main goal of this framework is to integrate simultaneously
the dynamic evolution of the ADS, their perception chains,
and those from infrastructure in order to guarantee that their
interaction leads to an enhanced performance without causing
any hazardous event. Figure 1 gives an overview of the
collaborative perception cycle.

A. Perception inputs

Two inputs are considered for the merger at the global
manager (GM): from vehicles and infrastructure. Each ADS
is considered to be fully autonomous w.r.t. perception of the
environment and controlling actions in to ensure the successful
completion of its actions towards its environment. Each ADS
is assumed to act safely without requiring the infrastructure to
realize its safety concept. Additionally, we assume that each
ADS is assured to provide safe interfaces to collaborate with
the other systems safely. The safe integration of safe systems



of systems is still challenging, but this particular aspect is not
within the scope of our framework. Instead, we reuse safe
integration concepts as, for example, suggested in [10] and
[11].

In order to provide constant perception enhancement in criti-
cal scenarios such as high traffic crossings, the framework also
relies on inputs provided by the surrounding infrastructure.
The benefits of outside AV sensing has been shown in [9] and
[12].

B. Bayesian Occupancy Filter

Bayesian Occupancy Filters (BOF) are the main format to
be exchanged between sensors (vehicles and infrastructure)
and the global manager. Many approaches use an object
list, providing a list of classified objects, their position, and
possibly their estimated expected trajectory. However, this
requires that the data received from sensors can be associated
with the objects, which is hardly possible in crowded scenes
where many different objects are pass by each other so that it
becomes challenging to identify and track objects. Meaning
that given the object list of the detected objects, it must
control if a sensor input matches one of the existing objects.
Moreover, it must also, since the tracking is independent for
each object, add and delete them to the object list. Extending
these challenges to complex scenarios such as urban crossings
makes the classical object-tracking intractable due to the high
dynamicity of the targets. That is why [13] introduce BOF as a
method to circumvent this so-called data association problem
and to take into account the uncertainties associated with the
dynamic evolution of the context perceived by the autonomous
system. Initially implemented in Advanced Driver Assistance
Systems, the BOF has been used in various other applications
as described in [14].

Using BOF allows the framework to initially abstract from
the notions of tracking and detection. The filter relies on an
original use of occupation grids [15]. In this representation,
the environment is cut into cells. The occupancy probability
of a cell by any object is estimated from the observations of
the sensors. In this case, the grids are defined in an ego-centric
frame of reference (i.e., centered on the vehicle), representing
the state space of the objects present in the environment
(position and relative speed). The area defined by these grids
constitutes an additional feature compared to the classical uses
of occupancy grids (position only).

In the context of the framework, the output of the filter is
the core data exchanged by the agents. Thus, regardless of the
perception chain implemented or specific algorithms run, the
filter becomes a standard interface to be exchanged with the
global manager.

C. Data Fusion

Based on the BOF-data provided by the single participants,
the core of the framework is realized within the Global Man-
ager (GM). The Global Manager is the core of the framework.
It is responsible for:

• Detecting new collaborating agents in the scenario. That
is expected to happen over communication channels.
Advances in the V2X community [16] lead to believe that
resilient communication in automated driving scenarios is
not a distant goal to be achieved. Although, challenges
remain in the way of the technological deployment [17].

• Merge the individual outputs of the perception chains
in order to evaluate the scenario. By doing so, the GM
compiles a more complete picture of how the context may
evolve and if an agent’s predicted behaviour might impair
other participant’s safety.

• Creating a digital representation of the collaborating
systems, ADS or infrastructure, referred here as Dynamic
Agent (DA). The DA allows the GM to have precise
information about the situation and intentions and thus
spares the burden of predicting their behaviours.

• Feedback the enlarged world model to the participating
ADS so they can improve their decision-making with a
more accurate perception of the environment.

Therefore, the global manager’s core task is the data fusion,
i.e., to merge the Bayesian Occupancy Filters’ output received
from the different vehicles and the infrastructure to detect
potential obstacles. In order to merge perspectives from both
vehicles and infrastructure sensors, a coordinate transforma-
tion must take place first so that all inputs are available in a
common reference coordinate system. This can be achieved
through the inverse extrinsic matrix of the perception chains.
Given a set Xg of global coordinates (xg, yg, zg), one can
obtain the sensor i coordinates through the extrinsic matrix
Mext:

Mext
i = [Ri|ti]

Being Ri and ti the rotation matrix and translation vector of
sensor i. To obtain the global coordinates, the inverse process
can be directly applied using homogeneous coordinates:

Xg =


xg

yg
zg
1

 = Mext−1

i


xs

ys
zs
1


It is important to notice that these matrices depend on the

position and orientation of the sensor in the global environ-
ment. Thus, delays and noise in the computation of these
parameters may disturb the transformation. Although currently
not taking these factors into account, addressing them will be
subject to future work.

Once the BOFs have been transformed into a joint co-
ordinate system, the framework merges the different result
into one global world model. To this end, we extended the
BOF algorithms but still following the principles of Bayesian
Filters. Instead of merging temporal sequences of sensor input,
we merge spatial alternatives representing the same point in
time.

Merging different BOF-based perception data from different
sources and different perspectives allows us to yield more



accurate detection results without using machine learning-
based algorithms, which hence simplifies the according safety
case. However, if the single vehicles prefer using their own
perception system as the primary perception channel, the
integrated results provided by the global manager can serve
as additional estimated ground truth the vehicles can integrate
into their monitoring architecture.

D. Model refinement with classification

However, BOFs do not only represent the current situation,
but it also supports a prediction of the future using the
probabilities of position and velocity, which are inherent
information provided by the BOF grids. Therefore, in order
to predict the future, the Global Manager propagates the
probabilities provided in the integrated grid for inferring how
the grid will evolve in the next step. However, using a standard
BOF approach leads to a comparably low accuracy as the
prediction assumes that the participants could, in principle,
move in any theoretically possible direction. Though initially
abstracting from tracking and detection with the BOF, we
use classification information as optional, additional inputs
for enhancing the prediction provided by the framework. By
assigning a type to the object, the framework is then allowed to
constrain the possibilities of predictions and generate a more
accurate assessment of the situation. For example, it is clear
that a car is likely to follow the street and will not drive onto
a walkway. In the same way, typical paths of pedestrians can
be considered by the framework. To this end, the framework
additionally profits from the advantage to be tailored to the
specific traffic situation, such as a concrete crossing, so that it
can incorporate semantic and statistical knowledge about the
specific crossing into the prediction models.

In this way, although still relying on the BOF’s robustness
to identify the surroundings, the framework can then fine-tune
the model to provide a better representation.

IV. CONCLUSION AND FUTURE WORK

As we shift towards a world with increased reliance on
autonomous systems, their perception capabilities become
paramount for safety and performance. Current approaches
rely on perception chains associated with the individual vehicle
and thus are limited to their physical constraints. Given the
uncertainties and physical limitations of complex scenarios,
their deployment is a challenge.

To address these limitations, we proposed a framework to
merge different perspectives to augment the context knowl-
edge of individual vehicles while maintaining their indepen-
dence regarding their decision-making capabilities. We aim to
achieve this by extending the Bayesian Occupancy Filter to a
collaborative scale by sharing outputs of individual perception
chains. Moreover, we aim to fine-tune the initial prediction
models in the grids with the classification outputs to constrain
path prediction.

Currently, we have implemented individual perception
chains on individual vehicles in a simulated environment with

CARLA [18]. As next step, we will introduce the BOF compu-
tation and merger to evaluate the approach against individual
perception chains and other collaborative approaches.
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