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Abstract. In this work, we propose SENA, a run-time monitor
focused on detecting unreliable predictions from machine learning
(ML) classifiers. The main idea is that instead of trying to detect
when an image is out-of-distribution (OOD), which will not always
result in a wrong output, we focus on detecting if the prediction from
the ML model is not reliable, which will most of the time result in
a wrong output, independently of whether it is in-distribution (ID)
or OOD. The verification is done by checking the similarity between
the neural activations of an incoming input and a set of represen-
tative neural activations recorded during training. SENA uses infor-
mation from true-positive and false-negative examples collected dur-
ing training to verify if a prediction is reliable or not. Our approach
achieves results comparable to state-of-the-art solutions without re-
quiring any prior OOD information and without hyperparameter tun-
ing. Besides, the code is publicly available for easy reproducibility
at https://github.com/raulsenaferreira/SENA.

1 Introduction
State-of-the-art OOD detectors were empirically demonstrated to
yield a considerable number of false positives (i.e., correct predic-
tions rejected by the monitor) [32, 15, 8] and false negatives (i.e.,
ML model prediction errors not detected by the monitor). On the one
hand, a high number of false positives have a negative impact on the
performance of the ML model for ID data. One of the main reasons
is that current monitors treat OOD data as data that the ML model
should avoid. Hence, such monitors tend to be activated for all OOD
data. However, except for new objects, not all OOD data lead to a
failure in the ML model [12]. On the other hand, false negatives tend
to decrease the safety of an ML-based system [10] as unsafe data
instances are not detected. They are mostly due to the fact that ML
models still have to deal with possible wrong predictions for ID data
as well, and recent works theoretically demonstrated that wrong ML
predictions for both ID and OOD data may be linked to the same
phenomena of model misestimation problem [37].

In addition, recent works showed that OOD detectors solely based
on uncertainty [31], generative models [37] and its densities [22],
cannot safely guarantee that the OOD detection is correct, except for
specific combinations of datasets, which highlights the importance
of approaches that can detect when the ML model can correctly deal
with the data, independently if it is ID or OOD.
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Figure 1: Similarity-based Error-checking of Neural Activations.
SENA checks neural activations that may lead to erroneous ML
model predictions by comparing them to representative neural ac-
tivations from the training set. The motivation for using correct and
incorrect examples from the training dataset is to help the monitor to
deal with not only OOD data but also incorrectly classified ID data.

Therefore, we propose SENA, a monitor that uses a similarity-
based error-checking of neural activations to monitor incorrect pre-
dictions at runtime. As illustrated in Figure 1, SENA uses the acti-
vation functions of the ML model combined with its prediction to
monitor if an image can lead to a unreliable prediction at runtime.

This work is organized as follows: In Section 2, we point to the re-
lated work regarding OOD detectors in the literature. In Section 3, we
detail our approach by showing how our monitor is built with training
data, how it automatically chooses thresholds, and how it performs
the ML monitoring at runtime. In Section 4, we show the experi-
ments, and the analysis of our results using classification metrics and
safety ones. Finally, in Section 5, we present our final considerations,
limitations, and possible improvements to our method.

2 Related Work
Related works usually monitor an ML model at runtime through one
of three types of source of information: 1) the input; 2) the model’s
internal values; 3) the outputs from the last layer.

An example of input monitoring is to adversarially train an ML



model to reconstruct a noisy image to an image similar to a previ-
ously known class [30]. It means that a new image arrives at runtime,
and this ML model tries to reconstruct this image to a known one
from the set of known classes previously seen in the training phase.
The actual image is considered OOD if there is a considerable differ-
ence between the reconstructed image and the actual image. Another
recent approach uses reverse knowledge distillation from a teacher-
student (T-S) model’s one-class embedding [4].

Regarding the model internals monitoring, we can mention model
logits [19, 13] or activation function patterns such as outside-the-
box [16]. Such a strategy inspects the output of an activation function
during runtime after a new image passes through the ML model. If
the pattern is different from what is known during training, it raises
the alarm considering this input as a novel one. Another recent ap-
proach uses a threshold over the k-nearest distances between the em-
bedding of test input and the embeddings of the training set [33].

Finally, regarding the model outputs monitoring, the most com-
mon approach is to monitor confidence values [18] by applying tech-
niques that decrease the DNN confidence values on novel inputs.
Other approaches also use thresholds on the model outputs to take
a decision such as max softmax probability [13], and energy [26].

SENA differs from related works in two main aspects: 1) It uses in-
formation from both true positives (TP) and false negatives (FN) col-
lected during the model training, which is a unique feature and allows
SENA to automatically choose thresholds that are better adapted for
a specific dataset. 2) It uses a statistical concept known as core sup-
port extraction combined with a simple distance metric, which makes
our approach less sensitive to ID outliers. Another aspect of SENA
is its independence from prior OOD data or hyperparameter tuning,
such as rejection thresholds or the number of clusters [16].

3 Similarity-based Error-checking of Neural
Activations

SENA is built as a one-class monitor, such as one-class support vec-
tor machines [24], class-reconstruction-based methods [30], or meth-
ods based on class-activation-function patterns [16]. Since not all
classes need to be monitored (e.g., 100% of accuracy), we moni-
tor by class. Therefore, an independent monitor is produced for each
class of interest from the monitored model, and the ML prediction
given at runtime is used to choose which monitor will be used. We
do not use information from OOD data or other ID classes since at
runtime one cannot assess which data are exposed to the ML.

3.1 Monitor building

As illustrated in Figure 2, SENA monitor is built in four steps:

1. Training features extraction. We feed the trained model with all
the training images labeled as c. Then, we extract the neural ac-
tivation vectors from these images and store them in two distinct
sets: STP , containing all the feature vectors corresponding to cor-
rectly classified data (i.e., predicted as c), and SFN , containing the
incorrectly classified feature vectors. STP represents the features
corresponding to the TP for class c, while SFN contains the FN.

2. Core support extraction. As the monitored neural network is
mostly correct on its training data, we usually have |STP | >>
|SFN |, and the number of samples in STP can quickly become
very large. Hence, the second step of SENA intends to reduce the
size of STP by selecting a small subset of representative samples.
To do so, we apply a core support extraction algorithm [11]. Core

support samples are the ones that contain the most informative
characteristics of the underlying distribution of the set, i.e., they
can represent most of the entire original distribution. Besides re-
ducing the size of STP , core support extraction helps SENA to
filter outliers. A core support extraction algorithm has two steps:

• Weighting: In this step, the probability distribution from which
elements in STP were drawn is estimated using any multi-
variate density estimator, such as Gaussian mixture models
(GMM) [29] or kernel density estimation (KDE) [38]. In this
work, we chose KDE for its flexibility since it does not re-
quire knowing the parameters of the distribution to be fitted.
In this work, the KDE algorithm uses the Gaussian kernel, and
the bandwidth value is automatically tuned using a grid search
algorithm. To choose the Gaussian Kernel, we looked at the dis-
tributions of distances between FN and TP for different datasets
(CIFAR-10 on Fig. 3) and they appeared Gaussian. Hence, we
train the KDE algorithm with STP and use the same trained
estimator to calculate the probability density function value
(PDF) for each sample in STP . Thus, each sample in STP

is weighted based on its PDF. Worth mentioning that KDE is
not applied to FN due to its low occurrence in the training set.
Our method is a redundant mechanism to handle potential mis-
classifications and is not intended to replace a well-trained ML
model, which ideally has few FN.

• Selection: Then, we select the k densest samples in STP , i.e.,
the feature vectors corresponding to the k highest PDF val-
ues attributed for STP . A feature vector h with a high PDF
value means that the sample is more likely to be drawn from
the distribution learned by the KDE. Hence, these samples are
the ones that best represent the original distribution of STP .
The selected samples are stored in a set RTP , containing the
k most representative elements of STP . The choice of k rep-
resents a trade-off between accuracy in the training set and the
amount of memory required to store the samples to be used at
runtime. Previous works showed that such density estimation
selection can discard up to 90% of the original dataset without a
drastic performance drop [9]. Therefore, in this work, we chose
k = 10% of the training set. Besides, increasing the value of
k should not compromise performance, as it allows SENA to
use more information from the distribution. Due to space con-
straints, we did not conduct a sensitivity analysis for k.

3. Distances computation. Next, SENA uses the set of true positive
representative activations RTP and the set of false negative activa-
tions SFN , to calculate two sets of distances: 1) the set DTP−TP

contains all the distances among elements of RTP , and 2) the set
DTP−FN contains all the distances between elements of RTP

and elements of SFN . In this work, we use Euclidean distances
between vectors.

4. Automatic threshold computation. Finally, the overlapping re-
gion between the distributions of DTP−TP and DTP−FN are an-
alyzed. A threshold α belonging to this region is estimated by the
algorithm (more details in Subsection 3.2). This threshold is used
at runtime to determine if a model prediction is reliable or not.

After iterating over all training images labeled as c, we produce
a SENA monitor for this class, composed of a set of representative
true positive feature vectors RTP , and a distance threshold αc. By re-
peating this process for every possible output class of the monitored
neural network, we can build a complete SENA monitor.



Figure 2: SENA monitor building. 1) A core support extraction algorithm is applied for weighting and selection of the most representative
true positive neural activations to be stored and used at runtime. 2) It calculates the neural activation similarities among representative true
positives, and also between true positives and false negatives.

3.2 Automatic threshold selection

Figure 3: Activation vectors distances of the first 4 classes of
CIFAR-10. The x-axis represents the Euclidean distance values, and
the y-axis represents the distribution density (e.g., amount of points).
The blue line represents the distance distribution between true posi-
tives, and the orange line represents the distance distribution between
true positives against false negatives.

As mentioned earlier, for a specific class, SENA generates
the threshold α by analyzing the distributions of DTP−TP and
DTP−FN . To understand how DTP−TP and DTP−FN are dis-
tributed, Figure 3 illustrates the densities of DTP−TP (in blue) and
DTP−FN (in orange) for the first four classes of the CIFAR-10
dataset. Activation features were extracted from a ResNet model.

In the CIFAR-10 dataset, we can observe overlapping areas be-
tween DTP−TP and DTP−FN . It indicates that monitors that rely
on activation function vectors might experience false positives (i.e.,
rejecting valid predictions) coming from the regions where there ex-
ist outliers, that is, FN with a higher distance density in the original
distribution than TP. A threshold will be chosen considering the ex-
istence of such outliers to decide when flagging a wrong prediction.

To decrease the human supervision from the daunting task of
choosing a threshold, we apply a simple strategy of varying the
threshold α based on the overlapping area of the distributions.

Figure 4: Flexible thresholds. SENA threshold for TP and FN.

As illustrated in Figure 4, the threshold α is set to µ+ σ, where µ
and σ are respectively the mean and standard deviation of the inter-
section set, i.e., all the elements in DTP−TP and DTP−FN that are
greater than min(DTP−FN ) and smaller than max(DTP−TP ). The
standard deviation is very useful for measuring the data dispersion in
the distributions regardless of whether data are normally distributed.
This allows α to assume different values depending on how the data
in STP and SFN are spread. Therefore, smaller overlapping regions
α (uncertainty regions) between TP / FN activation functions mean
better separation between both distributions, leading to less uncer-
tainty for the monitor to decide if an activation function comes from
a reliable prediction (TP) or not (FN). This is important since the
literature shows a high amount of false detections from activation
function-based approaches due to activation functions that fall in that
regions. If no FN exists for a specific class, the value of α is the max-
imum value of DTP−TP , and if an average distance d̄ falls outside
the range of DTP−TP it is considered an unreliable prediction.

3.3 Monitor at runtime

For a given class c, SENA starts with two artifacts previously cal-
culated in the monitor building process: a threshold αc, and a set of
TP representatives (Rc

TP ). As illustrated in Figure 5, SENA verifies
if the incoming prediction might be unreliable. It extracts the neu-
ral activation vector h from a particular neural-network layer during
the ML model prediction on an image X . This work takes it from
the penultimate layer since it is the most informative one [16]. Then,



Figure 5: Two examples of SENA monitoring a class at runtime. The average distance d̄c is calculated by comparing the feature vector from
the incoming image to DTP−TP : 1) SENA triggers an alarm since d̄c > αc (unreliable prediction); 2) SENA does not interfere in the ML
prediction since d̄c ≤ αc (reliable prediction).

SENA calculates the average distance d̄c between h and elements of
Rc

TP . If d̄c is higher than αc, then SENA considers the prediction
unreliable, otherwise, it considers the prediction reliable.

Finally, regarding the computational costs, SENA only computes
the average Euclidean distance between the incoming and represen-
tative vectors. The memory cost is limited to a vector n ∗ 10% of the
data, where n is the number of neurons in the monitored layer.

4 Experiments
Our experiments are conducted on several image classification tasks.
Besides, since we want our experiments to be as close as possible to
real-world scenarios, we set some important constraints, which can
lead to different results from what has been reported in the literature
previously. We use the concept of out-of-model-scope (OMS) intro-
duced in this section and in [12]. Here are the details:

• OOD vs OMS. In the OOD evaluation scenario, the monitor has
to trigger an alarm when an OOD image arrives. However, in our
experiments, the goal is to detect unreliable predictions instead of
OOD data and we consider that a monitor is correct if it rejects
wrong predictions, independently of their ID/OOD status. This
evaluation is also known as out-of-model-scope detection (OMS).

• Stream of random images. We consider a scenario in which the
images are randomly given to the ML model in a streaming fash-
ion, that is, the data stream will feed one image at a time to the
ML model. Therefore, approaches based on time series, or from
batches of data to perform the detection are not considered.

• No hyperparameter tuning. Datasets are divided into ID data
(training/test) and OOD data (test), and the monitors are not al-
lowed to use information or assumptions from test data to fine-
tune rejection thresholds or their detection strategies. That is,
monitors must be built using only the training data since in a real
situation, it is unrealistic to consider that we know which kind of
data will be fed to the ML model at runtime. Hence, related works
that use information from test data (e.g., [25]) are not considered.

• No optimal performance metrics. Several works in the literature
test their solutions on the entire dataset with different rejection
thresholds and display the results corresponding to the best results

according to some metric (e.g., F1, ROC curves, etc) [12]. Al-
though this approach can be relevant to demonstrate the optimal
performance of a detector over all possible threshold choices, in a
real-world scenario, one cannot perform such threshold optimiza-
tion using the test data. Therefore, in this work, all analyses of the
results are performed using objective metrics that do not depend
on multiple runs using the test data. Thus, we decrease bias and
conflicts between parameter fine-tuning and observed results.

4.1 Experiment settings

We perform 38 experiments using three popular image datasets as
ID, of which two are RGB: CIFAR-10 [21], and SVHN [27]; and
one is grayscale: MNIST [6]. For each ID dataset, we split it into
train and test, in which the train is used to fit the monitors, and the
test is used to evaluate the monitor under ID data. Except for novelty
tasks, the ID test data is used to generate the OOD datasets through
image transformations. Below, we present the tested OOD scenarios:

• 16 class novelty experiments:

1. For CIFAR-10 we use CIFAR-100 [21], GTSRB [17], SVHN,
LSUN [36], Fractal [14], and TinyImageNet (subset of Ima-
geNet [5]) to represent the novel data.

2. For SVHN we use CIFAR-10, CIFAR-100, Fractal, GTSRB,
LSUN, and TinyImageNet.

3. For MNIST [6], we use Fashion-MNIST [35], E-MNIST (let-
ters) [2], American sign language (ASL) MNIST [34], and
Simpsons MNIST [1].

• 16 distributional shift experiments: for each RGB ID dataset,
we apply eight image transformations from the AugLy li-
brary [28]: brightness (factor=5), blur (radius=4), pixelization (ra-
tio=0.1), shuffled pixels (factor=0.3), contrast (factor=9), opacity
(level=0.2), rotate (degrees=25), and saturation (factor=17).

• 6 adversarial attack experiments: for each RGB ID dataset, we
apply three adversarial attacks from Torchattacks [20], with de-
fault parameters: fast gradient sign method (FGSM), DeepFool,
and projected gradient descent (PGD).



Once the scenarios are set, we choose two different deep learning
architectures to test with the monitors: the ResNet models from [23]
for RGB images, and a custom CNN [6] model for grayscale images.

We compare our proposal to four related works: outside-the-box
(OTB), max softmax probability (MSP), max logits, and energy.

An important note is that except for SENA and OTB, the moni-
tors tested in our experiments require selecting a rejection threshold
on the monitoring scores. The best strategy for choosing thresholds
is not addressed in this work. However, in our experiments, we con-
ducted two simple steps: 1) We fit the monitors using the same train-
ing data as the ML model. 2) We choose a threshold for the fitted
monitors based on the best Matthews Correlation Coefficient (MCC)
value for detecting correct/incorrect ML predictions from the train-
ing set. Such threshold tuning based on the training set is challenging
but realistic. The oracle for the monitor evaluation is as follows:

• TP: the monitor is triggered and the model prediction is wrong.
• TN: the monitor is not triggered and the model prediction is right.
• FP: the monitor is triggered and the model prediction is right.
• FN: the monitor is not triggered and the prediction is wrong.

For the metrics, we apply four classification metrics for imbal-
anced datasets: Matthews Correlation Coefficient (MCC), false pos-
itive rate (FPR), false negative rate (FNR), and macro-F1 scores re-
garding the monitor’s output. For the OOD categories with more than
15 experiments, it is possible to perform Wilcoxon signed-rank tests
with statistical guarantees [7] for each pair of tested methods. Thus,
we compare if the methods are significantly different from each other
across multiple experiments in a specific OOD category [3].

4.2 Results

Below we show the results separated by novelty class, distributional
shift, and adversarial attack. The best results are written in bold.

4.2.1 Novelty class

Table 1: MCC results for novelty class: organized by ID - OOD.

Experiments OTB MSP Logit Energy SENA

CIFAR 10 - CIFAR 100 0.41 0.27 0.29 0.28 0.38
CIFAR 10 - Fractal 0.76 0.54 0.42 0.35 0.71
CIFAR 10 - GTSRB 0.66 0.34 0.28 0.25 0.55
CIFAR 10 - LSUN 0.78 0.52 0.44 0.38 0.80
CIFAR 10 - SVHN 0.48 0.33 0.23 0.17 0.60
CIFAR 10 - T. Imagenet 0.69 0.51 0.43 0.38 0.75

SVHN - CIFAR 10 0.81 0.29 0.45 0.51 0.85
SVHN - CIFAR 100 0.80 0.29 0.45 0.52 0.84
SVHN - Fractal 0.85 0.42 0.53 0.58 0.77
SVHN - GTSRB 0.67 0.24 0.33 0.38 0.72
SVHN - LSUN 0.78 0.38 0.53 0.59 0.79
SVHN - T. ImageNet 0.81 0.40 0.54 0.60 0.82

MNIST - ASL MNIST 0.93 0.87 0.60 0.90 0.90
MNIST - EMNIST 0.67 0.30 0.46 0.37 0.60
MNIST - F. MNIST 0.74 0.51 0.50 0.63 0.70
MNIST - S. MNIST 0.91 0.82 0.64 0.88 0.83
Average rank 1.5 4 3.7 3.2 1.5

The MCC results corresponding to novelty OOD scenarios are re-
ported in Table 1. Looking at the MCC results and the average rank,
both SENA and OTB obtained the best results to avoid wrong predic-
tions in the novelty class scenario. All the other three methods (MSP,
Max logit, and energy) performed similarly between themselves.

These results indicate that deploying methods along with ML
models for this scenario is a promising research direction. Besides,
the methods based on activation functions (OTB, SENA) provided
the best MCC results among the methods. To understand better such
behavior, we illustrate a positive and negative analysis in Figure 6.

In Figure 6a, the average false negative rate of activation-function-
based methods is way lower than the other methods. This shows a
better capacity of such a strategy in identifying data that is OMS.
The figure also shows that the softmax probability can be very useful
in the verification of possible false positives in the novelty class sce-
nario. As can be seen in the Sub-figure 6b, on average, the macro-F1
values for OTB and SENA show stable and superior results.

Finally, we perform a statistical analysis of the results. Blue boxes
mean the MCC values measured through the experiments, from two
paired algorithms, were not significantly different from each other.
On the contrary, p-values lower than 0.05 indicates that two paired
algorithms have a statistical difference between their results for an
OOD category. Figure 7 shows that SENA and OTB are significantly
different than the other methods. Table 1 shows that OTB and SENA
obtained the best average ranks. The combined analysis indicates that
OTB and SENA were the best methods in the novelty class scenario.

4.2.2 Distributional shift

Table 2: MCC for distributional shift: ID data - Transformation.

Experiments OTB MSP Logit Energy SENA

CIFAR 10 - Blur 0.65 0.20 0.12 0.09 0.57
CIFAR 10 - Brightness 0.32 0.33 0.38 0.38 0.48
CIFAR 10 - Contrast 0.42 0.39 0.44 0.44 0.36
CIFAR 10 - Opacity 0.39 0.46 0.46 0.44 0.43
CIFAR 10 - Pixelization 0.62 0.21 0.14 0.10 0.58
CIFAR 10 - Rotate 0.43 0.37 0.36 0.34 0.38
CIFAR 10 - Saturation 0.42 0.36 0.42 0.41 0.35
CIFAR 10 - Shuffled pixels 0.37 0.33 0.35 0.33 0.56

SVHN - Blur 0.58 0.24 0.35 0.40 0.60
SVHN - Brightness 0.72 0.16 0.19 0.21 0.55
SVHN - Contrast 0.50 0.46 0.52 0.53 0.28
SVHN - Opacity 0.55 0.31 0.42 0.47 0.29
SVHN - Pixelization 0.66 0.20 0.31 0.36 0.67
SVHN - Rotate 0.45 0.31 0.40 0.43 0.27
SVHN - Saturation 0.57 0.32 0.40 0.44 0.34
SVHN - Shuffled pixels 0.53 0.29 0.39 0.43 0.39
Average rank 1.6 3.8 2.6 2.6 2.5

The parameter values for the distributional shift transformations
(e.g., level of blur, opacity, etc) were chosen such that the ML alone
achieves MCC results between 0.2 and 0.8. It means that the ML
model is placed in a challenging scenario that justifies the use of a
monitor since it is not capable of having strong results (MCC < 0.8)
while having better results than a random classifier (MCC > 0.2).

According to Table 2, all methods, except the one based on soft-
max, have comparable results, in which SENA achieved the best
MCC results four times. The overall performance in the distributional
shift scenario was worse than in the novelty class scenario. This de-
crease in the results indicates that activation function methods are
better for novelty and less good for distributional shift.

We can see in Figure 8a the huge amount of false positives yielded
by OTB and SENA since the activation function-based methods tend
to have difficulties in distributional shift scenarios. On the other hand,
MSP, Max logit, and energy have lower FP rates since their thresh-
olds are entirely based on the performance of the ML model over



(a) FPR / FNR for novelty class experiments. (b) F1 for novelty class experiments.

Figure 6: False positives and negative analysis for novelty class experiments.
Figure 6a shows a lower number of false positives and false negatives for OTB and SENA.
Figure 6b illustrates a good balance and stability for OTB and SENA regarding recovery and precision over new classes.

Figure 7: Novelty class experiments.

the ID data. Thus, since ID data support overlaps with OOD data,
these methods tend to have lower FP rates. However, the amount
of FN is as high as the other methods. Such phenomenon leads to
not-so-good overall macro-F1 results (Figure 8b). Finally, Figure 9
combined with the average ranks in Table 2 shows that OTB was the
best method, while the other methods had similar performance.

4.2.3 Adversarial attacks

The tested methods were not originally developed to detect adversar-
ial images, and to perform such detection requires particular defense
strategies for each type of attack which is an open research problem.
However, we find it relevant to experiment on these three adversarial
scenarios to give possible insights for future work and to complement
the analysis of all OOD categories mentioned early on in this work.

Table 3 shows the MCC results in the adversarial attack scenario in
which the monitoring strategy applied by the two activation-function-
based methods was consistently better than the others.

Table 3: MCC results for adversarial attack: ID data - Attack.

Experiments OTB MSP Logit Energy SENA

CIFAR 10 - Deep fool 0.39 0.16 0.14 0.20 0.47
CIFAR 10 - FGSM 0.48 0.44 0.45 0.43 0.62
CIFAR 10 - PGD 0.20 0.06 0.20 0.21 0.68

SVHN - Deep fool 0.50 0.13 0.05 0.12 0.48
SVHN - FGSM 0.63 0.24 0.33 0.37 0.38
SVHN - PGD 0.54 0.09 0.15 0.38 0.50
Average rank 1.5 4.3 4 3.3 1.2

Figure 11 shows good macro-F1 values for OTB and SENA. Such
results reflect precision and recall with equal importance. It means
that even though their results are not bad when looking for both ID
and OOD, it will depend on the amount of OOD data exposed at
runtime. Such phenomenon is better understood by seeing Figure 10.
SENA obtained the lowest amount of FN among the tested methods.

5 Conclusion

In this work, we propose SENA, a similarity-based error-checking of
neural activations approach to monitor incorrect predictions at run-
time. SENA uses a statistical weighting and filtering method to se-
lect the minimal set of representative samples from the training set
combined with a simple similarity algorithm such as a Euclidean dis-
tance. The SENA threshold is chosen automatically based on the dis-
tributions of TP and FN. Our main findings are:

• Neural activation vectors from TP and FN can be very similar:
most related works rely on the assumption that incorrect classifi-
cations can be spotted by inspecting all neural activation vectors
that are not similar to the distribution of correct ones. However,
this is not entirely true for ID data or other types of OOD data.
We showed that feature vectors of TP and FN can be similar to
each other inside ID data. The necessity of filtering the right data
to better separate TP and FN data led us to the second finding.

• Not all training data is needed to build a monitor: just a part of TP
samples is needed to extract the necessary information to perform



(a) FPR/FNR for distributional shift. (b) F1 for distributional shift experiments.

Figure 8: False positives and negative analysis for distributional shift experiments.
Figure 8a shows a high rate of false negatives for all methods but a low rate for those not based on activation functions.
Figure 8b shows that OTB still achieves a better balance between precision and recovery despite yielding more false positives.

Figure 9: Distributional shift experiments.

monitoring of a class. As shown, there are several outliers present
in the training data.By outliers, we mean activation function val-
ues from FN that are similar to TP, sometimes even more similar
than other TP compared between themselves. Hence, a filtering
mechanism, such as the core support extraction algorithm applied
in this work, can help to exclude samples that contribute nega-
tively to make a better separation between FN and TP. However, it
can be hard to select different thresholds for different ID datasets.
This showed the importance to investigate further sources of in-
formation, which led us to the third finding.

• Extracting information from both TP and FN is advantageous: the
use of both, when possible, allowed us to check different bound-
aries for the monitor’s thresholds by checking the distribution of
FN (e.g., error-prune ID data) instead of just checking what is nor-
mal (e.g., ID data that the ML model gives correct classification).
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