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Abstract—In increasingly electromagnetic-polluted environ-
ments, communication networks are becoming more vulnerable.
Even networks equipped with error control techniques suffer
from this problem. Electromagnetic disturbances can result in
corrupted data which are undetectable by error control tech-
niques. Such scenarios are extremely dangerous as the system is
unaware of the corruption. This could lead to critical failures.
Thus, protecting communication networks against this type of
undetected corrupted data is of the utmost importance. In this re-
gard, this paper presents an effective fault elimination approach
through encoder tuning. This technique enhances the resiliency
of a well-known forward error correction code, known as prim-
itive Reed-Solomon Codes, against steady-state single-frequency
electromagnetic disturbances. It is found that this approach
outperforms the previously proposed multi-layer inversion-based
fault elimination approach in mitigating undetected corrupted
data. Furthermore, it is shown that encoder tuning has two
main implementation advantages over our previous approach.
First, it does not require an extra layer to perform fault
elimination. Second, it eliminates the overhead of performing
double syndrome calculation at the consumer side.

Index Terms—Communication channel, electromagnetic dis-
turbance, Reed-Solomon codes, resilience, encoder tuning.

I. INTRODUCTION

THE Internet of Things (IoT) will be the backbone of fu-
ture intelligent societies and industries. It is estimated that

there will be around 32 IoT devices per person by 2030 [1].
This indicates that its market size could grow at an annual rate
of 20%, reaching $11.6 Trillion by 2030. Undoubtedly, safety-
critical and mission-critical technologies such as autonomous
vehicles, surgical robots, and smart factories, will have a
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significant share in this huge market.
This fast-growing market is a true indication of rising electri-
cal, electronic and programmable electronic (E/E/PE) devices.
Furthermore, certain design characteristics of these modern
E/E/PE devices, including smaller feature size and voltage
levels, make them more vulnerable to electromagnetic distur-
bances (EMD) [2]. Consequently, these E/E/PE devices could
lead to more extreme electromagnetic (EM) environments.
Correspondingly, communication networks in these E/E/PE
devices could be adversely affected. In an EM-polluted envi-
ronment, EMD induces additional voltages onto the communi-
cation channel which can result in bit-flips in the transmitted
data.
Error Control Techniques (ECT) have been developed and
employed to protect communication networks against a lim-
ited number of random bit-flips [3]. Forward Error Correc-
tion (FEC) is a subgroup of ECT that is commonly used in
a lower-layer communication. FEC can recover data without
asking for retransmission when a limited number of errors
are introduced. Correspondingly, FEC adds extra information
to the data words at the data producer side and generates a
dictionary of valid code words. This information is later used
at the time of decoding to detect and correct the corrupted
data.
FEC, however, has a major vulnerability that results in unde-
tected corrupted data (UCD). This happens when a code word
gets corrupted in such a way that it turns into another valid
code word. In such a scenario, the FEC is unaware of the
corruption and the decoder assumes that the received data is
correct. From the safety viewpoint, this could lead to critical
failures and in extreme cases, harm to users, bystanders, and
the environments. Therefore, it is vital to reduce the number
of UCD to a level as low as reasonably practicable in safety



or mission critical applications.
In our previous studies, the effectiveness of a well-known
FEC, known as primitive Reed-Solomon Codes (RS Codes),
was investigated against steady-state single-frequency EMD
by means of our in-house simulation framework [4], [5]. It
was found that the majority of UCD are caused by one-
symbol-value code words (i.e. all symbols in a code word are
identical). In accordance with the favorable impact of the over-
voltage detection (OVD) mechanism on the Hamming and
the Triplication codes [6], the impact of this mechanism was
assessed on primitive RS Codes [5]. Our simulations showed
that by choosing an appropriate voltage range, OVD could
substantially decrease the number of UCD. However, this is
obtained at a cost: decreasing the availability of data transmis-
sion. To alleviate this trade-off, a multi-layer inversion-based
fault elimination technique was introduced. Compared to the
OVD mechanism, this technique provides a better resiliency
and availability against single-frequency EMD. However, this
extra layer increases the overhead of the considered networks.
This study, therefore, utilizes previous findings to mitigate
this overhead and to improve the EM-resiliency of primitive
RS Codes even further through encoder tuning. This study
proves that by choosing a specific initial root for the generator
polynomial, RS Codes would generate dictionaries of code
words which are more resilient against the single-frequency
EMD.
The remainder of this paper is organized as follows. Sec-
tion II explains the theory behind the primitive RS Codes.
The experimental setup is covered in Section III. Section IV
details the enhanced implementation of multi-layer structure,
and describes an effective fault elimination technique through
encoder tuning. Finally, conclusions are stated in Section V.

II. REED SOLOMON CODES

Reed-Solomon codes (RS Codes) are linear block-based
FEC and are a subclass of Bose–Chaudhuri–Hocquenghem
(BCH) codes. A primitive error correction RS Code (n, k)

with a block length of n symbols and a data word length of
k symbols is defined over a finite field with q = P r symbols,
where n = q − 1. According to the finite field definitions, P
is always a prime number and r, which represents the symbol
size, is a positive integer (Z+) [7], [8]. Fig. 1 presents the
structure of the generated code word by RS Codes. It should
be noted that finite fields with base 2 (i.e. P = 2) will be
considered within this paper as the code words are transmitted
in the form of binary sequences.
Primitive error correction RS Codes are forward error cor-
rection codes which have the capability to correct s symbol
errors, and to detect up to 2s symbol errors, where n−k = 2s.
In this regard, RS Codes add 2s symbols as parity to the
data word and generate a code word. Through this step, RS
Codes generate a dictionary of qk valid code words with the
Hamming distance of n−k+1 bits. Correspondingly, RS Codes
take advantage of these parity symbols to detect and correct
the possibly corrupted code words.

Symbol

r-bits

Bit Parity (2s)

Data Word (k)

Code Word (n)

Figure 1: The structure of the RSCodes’ code word

A. Reed Solomon Codes Encoder

At this step, the generator polynomial g(x) adds the parity
information to the input data words and generates a dictionary.
As indicated in Equation (1), the generator polynomial g(x)

is constructed based on the cyclic characteristic of the multi-
plicative group of finite field elements [8]. Within this paper,
α is used as the primitive element of this field. This indicates
that each non-zero element of this finite field is describable in
the form of αi with i ∈ Z+.

g(x) = Πfcr+2s−1
i=fcr (x− αi) (1)

Here, fcr indicates the power of the first consecutive root
of the considered finite field. As shown in Equation (2),
systematic coding is employed to encode the data words. This
coding scheme is used because it embeds the data word within
the generated code word. Therefore, in case RS Codes detect
that the received code word is uncorrupted, the data word
can be easily stripped from the code word without further
unnecessary decoding steps which normally happen in the non-
systematic coding approach.

c(x) = x2s ·m(x)− [x2s ·m(x) mod g(x)] (2)

Here, m(x) and c(x) present the data word and the code word
polynomials, respectively. Additionally, the factor x2s is used
to prevent the overlapping between the data word and the
parity information by shifting the data word to a higher order.

B. Reed Solomon Codes Decoder

Upon receiving the code word at the consumer side, the RS
Codes decoder calculates the syndrome components as the first
step. This detection step determines whether the received code
word is valid.
In case of a zero syndrome, the received code word is valid,
and no further step is required. However, this scenario could
happen either when the original data is received or when the
data consumer receives a code word that is corrupted, but still
valid. This happens when the corruption is in such a way that it
turns a code word to another valid code word. Such a scenario
is undetectable and is detrimental to the overall system safety.
In both cases, the data word is eventually stripped from the
code word.
A nonzero syndrome, however, implies the presence of faults,
and it demands further steps to correct the code word. Note
that this paper follows the same correction steps employed
in [4].



Table I: An overview of the considered categories.

Category Channel Status Data Status Detector Status Label

Data True Positive (DTP) Data In Control Uncorrupted No Warning Green

Data True Negative (DTN) Data In Control Corrupted Warning Shade of Orange

Data False Positive (DFP) Data In Control Uncorrupted Warning Shade of Orange

Data False Negative (DFN) Data In Control Corrupted No Warning Shade of Red

Channel True Positive (CTP) Channel In Control Uncorrupted No Warning Shade of Red

Channel True Negative (CTN) Channel In Control Corrupted Warning Shade of Orange

Channel False Positive (CFP) Channel In Control Uncorrupted Warning Shade of Orange

Channel False Negative (CFN) Channel In Control Corrupted No Warning Shade of Red

III. EXPRIMENTAL SETUP

This paper has employed the same fault model and ex-
perimental setups which were previously used in [4], [5].
Additionally, the proposed condition assessment definitions
by Claeys et al. are employed within this paper to analyze
the effectiveness of RS Codes under the considered setup [9].
Based upon this category system, categories are generated
from the following three fundamental questions:

1) Is the output data word correct? Positive or Negative
2) Is the detection outcome correct after considering the

output of the previous question? True or False
3) Is the data in control or the channel in control? Data or

Channel
In accordance with the different outputs of the aforesaid ques-
tions, eight distinct categories are considered. These categories
are presented in Table I. As can be seen, all categories in
shades of orange produce a warning, while categories in shades
of red receive no warning. The latter is the focus of this paper
as the system is unaware of the corruption. Consequently, such
scenarios could lead to critical failures. Hence, it is essential
to mitigate these specific categories to a level that is as low
as reasonably practicable. Note that based upon the initial
assumption (i.e., the data producer and the data consumer are
assumed to be protected from any EMD or internal hacking),
all categories except DFN could happen under the considered
setup.

IV. FAULT ELIMINATION

As it was found in [4], the main vulnerability of RS Codes
to CTP and CFN is due to the occurrence of one-symbol-
value code words at specific frequencies. It is shown that
the disturbance frequencies which lead to these undetected
corrupted data (UCD) are directly dependent to the symbol
size (r) and the channel bit-rate (fbit) as follows:

fUCD =
j

r
· fbit, j ∈ N+ (3)

Mitigating this specific type of vulnerability would substan-
tially enhance the resiliency of RS Codes against single-
frequency EMD. The previous study showed that an inversion
layer, through inverting one symbol in each code word, effec-
tively reduces the occurrence of CTP and CFN. For further
information, the reader is referred to [10].
The aforesaid fault elimination technique can be implemented
via two approaches. The first approach is to store a dictionary
at the consumer side to check whether the received code

word is valid at the inversion layer. Despite its simplicity,
this approach is inefficient and almost impractical due to the
following limitations:

1) Storing the generated dictionary by RS Codes at the
consumer side could become challenging or sometimes
even impossible as the number of code words (i.e., qk)
exponentially increases for larger r and k values. The
required amount of memory can be calculated as fol-
lows. Given that each symbol consists of r bits and
each code word has n symbols, then each code word
contains n × r bits of information. In this regard, for a
dictionary with qk code words, the required amount of
memory is (n×r)×qk bits. For instance, for an RS Code
with r = 8 (i.e., 1 byte of information per symbol) and
k = 3, the required space to the store the dictionary is
about 4GB.

2) The inversion layer also results in a lower transmission
rate for big dictionaries as each received code word must
be checked against the whole dictionary at the consumer
side prior to the decoding step.

The subsequent section provides a more efficient implementa-
tion to alleviate these limitations.

A. Inversion Layer with Double Syndrome Calculation

As mentioned in Section II-B, the syndrome components
can turn to zero under two scenarios, i.e., when the transmitted
code word is uncorrupted or when the transmitted code word
gets corrupted but in a way that it turns into another valid
code word. In other words, when the decoder encounters a
valid code word based on the original dictionary, the calculated
syndrome will be zero. Therefore, rather than comparing the
received code words at the consumer side with a stored
dictionary, it is possible to only calculate the syndrome at this
stage, i.e., only the detection step of the RS Codes decoder.
In case of a zero syndrome, the inversion layer must switch
to a minimum risk state as it is not possible to receive a valid
code word after the inversion process. A non-zero syndrome,
however, indicates that the received code word is not valid and
the inversion must be reverted. Following this step, the code
word is transmitted to the decoder for both error detection
and correction to obtain the output data word. As can be seen,
through this approach, RS Codes calculate the syndrome two
times which increases the overhead of the decoding process.
This adverse impact, however, can be reduced by employing a
transmission buffer at the consumer side. The block diagram
of the proposed implementation is presented in Fig. 2.

In the following section, an effective approach through
encoder tuning is proposed. This approach eliminates the need
of employing an extra layer for fault elimination. Furthermore,
it eliminates the mentioned overhead of performing double
syndrome calculation at the consumer side.

B. Encoder Tuning

As mentioned earlier, the generator polynomial, g(x), is
responsible for generating a dictionary by encoding the data
words. Different initial roots of g(x), which is determined by
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Figure 2: An overview of the proposed implementation of the
inversion layer with double syndrome calculations.

the power of the first consecutive root (i.e., pfcr), can result
in different dictionaries. Using the contradiction approach, it
is possible to indirectly prove that when pfcr = 1 (i.e., the
first root is α), RS Codes generate a dictionary containing all
possible one-symbol-value code words, and when pfcr = 0

(i.e., the first root is α0 = 1), RS Codes produce a dictionary
free of one-symbol-value code words except for the all 0s
code word. The latter would reduce the ratio of CTP and
CFN significantly as the generated one-symbol-value code
words get limited to all 0s code word. Correspondingly, the
subsequent lemmas are required as the foundation of these
proofs.

Lemma IV-B.1. All roots of g(x) must be valid roots for c(x)

as every c(x) is a multiple of g(x).

Proof: According to Section II-A, code words can be system-
atically generated as follows:

g(x) = Πpfcr+2s−1
i=pfcr (x− αi)

c(x) = x2s ·m(x)− [x2s ·m(x) mod g(x)]

Let,

R(x) = x2s ·m(x) mod g(x)

Where R(x) is the remainder of
x2s ·m(x)

g(x)
, and,

x2s ·m(x) = Q(x) · g(x) +R(x)

Where Q(x) is the quotient of
x2s ·m(x)

g(x)
. Accordingly,

c(x) = x2s ·m(x)−R(x)

= [Q(x) · g(x) +R(x)]−R(x)

= Q(x) · g(x)

Therefore, c(x) is a multiple of g(x).

Lemma IV-B.2. The outputs of Exclusive OR (XOR) operation
on a finite sequence of integers starting from 1 up to N are
as follows:

f(N) = 0⊕ 1⊕ 2⊕ · · · ⊕ (N − 2)⊕ (N − 1)⊕N

f(N) =


N If (N mod 4) = 0

1 If (N mod 4) = 1

N + 1 If (N mod 4) = 2

0 If (N mod 4) = 3

Proof: Lemma IV-B.2 can be proved through induction:
For N = 0, f(0) = 0. Assume this is also true for all
integers, 0 ≤ N ≤ 4K, where K ∈ Z+. In this regard, it is
only required to demonstrate that this assumption asserts the
conjecture is valid for 4K + 1, 4K + 2, 4K + 3, and 4K + 4.
For N = 4K + 1:

f(N) = f(N − 1)⊕N → f(N) = f(4K)⊕ (4K + 1)

Here, it is assumed that f(4K) = 4K. In addition, as 4K is
even, its least significant bit is zero, thus, N = 4K+1 = 4K⊕1.
Accordingly,

f(N) = 4K ⊕ (4K + 1) = 4K ⊕ 4K ⊕ 1 = 1

For N = 4K + 2:

f(N) = f(N − 1)⊕N → f(N) = f(4K + 1)⊕ (4K + 2)

The least significant bit of 4K + 2 is also zero as it is even,
thus,

f(N) = 1⊕ (4K + 2) = 4K + 3 = N + 1

For N = 4K + 3:

f(N − 1) = f(4K + 2) = N + 1 = 4K + 2 + 1 = 4K + 3

f(N) = f(N − 1)⊕N → (4K + 3)⊕ (4k + 3) = 0

For N = 4K + 4:

f(N − 1) = f(4K + 3) = 0→
f(N) = f(N − 1)⊕N → f(4K + 3)⊕ (4K + 4)

f(N) = 0⊕ (4K + 4) = 4K + 4 = N

Lemma IV-B.3. The remainder of n divided by 4 is always 3.

Proof: According to the primitive RS Codes definition, n =

2r − 1, where r ∈ N1. However, for a functional RS Code
which has a detection and correction capability, r must be
greater than 1.
To prove this lemma, it is required to demonstrate that for
each r, there is always a non-negative integer (Z0+) quotient
available for (2r − 1)/4, which results in a remainder of 3. In
this regard, let assume that 3 and Q are the remainder and
quotient of (2r − 1)/4, respectively. Thus,

Q · 4 + 3 = 2r − 1→ Q · 4 + 4 = 2r

22 · (Q+ 1) = 2r → Q+ 1 = 2r−2



As it is evident, for r ≥ 2, 2r−2 is in Z+ and, therefore, it can
be concluded that Q is always in Z0+.

In what follows, it is proven that when pfcr = 1, RS Codes
generate a dictionary which contains all one-symbol-value
code words. Additionally, for pfcr = 0, it is demonstrated
that only the all 0s code word is valid in the generated
dictionary, and other one-symbol-value code words could
never be generated.
As the main step in the contradiction approach, it is assumed
that the generated dictionary contains one-symbol-value code
words. An one-symbol-value code word can be presented in
the form of Equation (4).

c(x) = M · (xn + xn−1 + · · ·+ 1) (4)

Where M is the symbol value, and 0 ≤M ≤ n.

Theorem IV-B.1. For pfcr = 1, RS Codes generate a
dictionary in which all one-symbol-value code words are valid.

Proof: Based on Lemma IV-B.1, all roots of g(x) must be
valid roots for c(x).

pfcr = 1 : g(x) = Π2s
i=1(x− αi) = (x− α) · · · (x− α2s)

Roots of g(x) = α, α2, · · · , α2s

If c(x) = M · (xn + xn−1 + · · ·+ 1)

for x = αj , 1 ≤ j ≤ 2s :

c(αj) = M · αj−1 · (αn + αn−1 + · · ·+ 1)

f(n) = αn + αn−1 + · · ·+ 1 consists of all the field elements.
Considering the cyclic nature of finite field elements, f(n) can
be presented as a sequence of numbers as follows:

f(n) = αn + αn−1 + · · ·+ 1 = n⊕ (n− 1)⊕ (n− 2)⊕ · · · ⊕ 1

Note that in a finite field with base 2, the multiplication
and summation operations become AND (∧) and XOR (⊕)
operations, respectively. Furthermore, since 0 is considered as
the identity element for XOR, f(n) can also be represented as
follows:

f(n) = f
′
(n) = n⊕ (n− 1)⊕ (n− 2)⊕ · · · ⊕ 1⊕ 0

Thereby,

c(1) = M ∧ αj−1 ∧ f
′
(n)

Based upon Lemmas IV-B.2 and IV-B.3:

n = 2r − 1 mod 4 = 3→ f
′
(n) = 0

c(1) = M ∧ αj−1 ∧ 0 = 0

This proves that all roots are valid in c(x), which indicates that
all one-symbol-value code words are valid when pfcr = 1.

Theorem IV-B.2. For pfcr = 0, the only one-symbol-value
code word that could be generated is all 0s.

Proof: Similarly:

pfcr = 0 : g(x) = Π2s−1
i=0 (x− αi) = (x− 1) · · · (x− α2s−1)

Roots of g(x) = 1, α, · · · , α2s−1

If c(x) = M · (xn + xn−1 + · · ·+ 1)

for x = 1 : c(1) = M ∧ (1⊕ 1⊕ · · · ⊕ 1)

Since n is always odd (i.e., 2r − 1), then, c(1) = M ∧ 1, as,

1⊕ 1⊕ · · · ⊕ 1 =

{
1 n is odd
0 n is even

Therefore, c(1) 6= 0 for M 6= 0.
As evidenced, the first root of g(x) (i.e., 1) is only valid in c(x)

if the symbol value, M , is equal to zero, which indicates that
except for the all 0s code word, the rest of one-symbol-value
code words could never be generated when pfcr = 0.

C. Performance Evaluation

Figs. 3 (a-d) and (e-h) present the fault category distribution
of the original RS Codes as a baseline (i.e., pfcr = 1) and the
impact of the inversion layer on it. In addition, Figs. 3 (i-l)
depict the effectiveness of the encoder tuning on the resiliency
of RS Codes (i.e., pfcr = 0). As can be seen, most major peaks
of CTP and CFN are eliminated at the considered frequencies
(i.e., fUCD), except the peaks at the frequencies of harmonic
(i.e., 200MHz and 400MHz). Compared to the baseline, these
ratios are reduced to half. This is due the fact that at harmonics,
EMD tends to turn all bits of all symbols into 0 or 1 by a 50%

probability. Since the all 0s code word is the only valid one-
symbol-value code word in this setup, these ratios are reduced
to half.
One solution to eliminate these remaining peaks is to exclude
the all 0s code word from the transmission. This would provide
a better resiliency at a cost of losing one code word of a
dictionary. Figs. 3 (m-p) demonstrate this improvement. As
can be seen, the rates of CTP and CFN have dropped to an
absolute zero in Figs. 3-m, 3-o, and 3-p, as was the objective of
this paper. Nevertheless, there is an extremely small drop in the
ratio of DTP (i.e., the green category) due to the exclusion of
all 0s code word which becomes smaller for larger dictionaries.
Note that, it is also possible to use the inversion layer to save
the majority of uncorrupted data from exclusion. However,
this creates an unnecessary overhead which is against the
objective of this approach. Thus, this paper recommends the
first solution to arm the RS Codes against the single-frequency
EMD.

V. CONCLUSION

This paper first proposed an efficient implementation of the
inversion layer through double syndrome calculation. How-
ever, due to the imposed overhead of calculating the syndrome
two times, the transmission rate could affect adversely. Corre-
spondingly, to alleviate this limitation, this paper presented an
effective fault elimination approach through encoder tuning to
arm the primitive RS Codes against single-frequency EMD.
The performance of this approach was assessed by means of
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Figure 3: The impact of different fault elimination techniques on the resiliency of RSCodes against single-frequency EMD.

our in-house simulation framework. It was shown that the en-
coder tuning approach outperforms the multi-layer inversion-
based technique. Furthermore, apart from its enhanced perfor-
mance, encoder tuning has two main implementation advan-
tages over the multi-layer structure. First, it does not require
an extra layer to make the RS Codes more resilient against
the single-frequency EMD. Second, this approach eliminates
the overhead of performing double syndrome calculation at
the consumer side.
Accordingly, compared to the state-of-the-art, it can be con-
cluded that encoder tuning is the most suitable approach
to substantially limit the impact of single-frequency EMD
on primitive RS Codes in safety-critical or mission-critical
applications.
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