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Abstract—In Multiple Extended Object Tracking, the PMBM
(Poisson Multi-Bernoulli Mixture) tracker is considered state-of-
the-art. Originally, it was presented with the GGIW (Gamma
Gaussian Inverse Wishart) target model, which is a random
matrix model. When tracking larger objects using LiDAR, mea-
surements are generated by the contour rather than the whole
target surface, and it is beneficial to model this with the target
model. A target model which has this capability is the Gaussian
Process (GP) extent model. This paper presents a PMBM tracker
using this target model. We also discuss considerations related
to the use of the GP model in the PMBM framework. Secondly,
we present improvements in the target model which increases
the robustness of the model by dealing with the inherent non-
linearities using the Gauss-Newton method. We also present a
comparison with the GGIW-PMBM tracker on simulated and
real LiDAR data gathered from maritime vessels.

Index Terms—Multi-target tracking, Bayesian estimation, Ex-
tended Targets, Gaussian Processes

I. INTRODUCTION

Target tracking, the issue of estimating the kinematic state of
one or several objects, has long used the point-approximation
when parsing sensor data. With the advent of high-resolution
sensors, it is now common that a measurement source gives
rise to multiple measurements. This has given rise to extended
target tracking models which enables the modeling of a
target’s extent in addition to its kinematic properties [1]. Initial
approaches used an elliptic shape as prior [2]. This is known
as the random matrix model. A version of this model, the
GGIW model, was used to demonstrate an Extended Target
PMBM filter [3] which builds on the original PMBM filter [4].
This filter has been expanded on with several improvements
with regards to data association and merging [5]–[8], as well
as a tracker using the sets of trajectories framework [9].
The random matrix model is not the only target model for
extended targets though. Another approach models the extent
using star-convex shapes and represents the shape using a
parametrization of the contour [10]. This enables the modeling
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of more complex shapes. It also allows an easier way to
model measurements that originate from the contour, such as
measurements generated by a LiDAR. The most promising
and investigated of these models uses Gaussian Processes
to estimate the extent [11]. This model has been used in
another Multi-target tracking filter, the δ-GLMB filter [12].
In previous work comparing different filter structures it has
been shown that the PMBM has a more efficient structure and
it can initialize a track faster with its Poisson birth model
as compared to Bernoulli birth models [13]. In this paper,
we aim to present an Extended Target PMBM tracker using
the Gaussian Process target model and provide an example of
a Poisson birth density. We present the applicable prediction
and update formulas. We also introduce an improvement to
dealing with the nonlinearity of the measurement model for the
Gaussian Process method, which has previously been explored
in [14]–[16]. Finally, we show the application of the developed
tracker on LiDAR data gathered by tracking smaller maritime
vessels.

II. BACKGROUND

Below we present a summary of the method of extent
estimation using Gaussian Processes presented in [11]. Then
we outline the theory related to the PMBM filter which was
presented in [3] and the extension of the theory to sets of
trajectories which was presented in [9].

A. Gaussian Process

A Gaussian process (GP) can be considered a distribution
over functions [17]. It is completely specified by its mean
function m(γ) and covariance function k(γ, γ′). Using Gaus-
sian processes to estimate a radial function means that we can
write

f(θ) ∼ GP(m(θ), k(θ, θ′)) (1)

Where f(θ) defines the radius at angle θ. We want to estimate
the values of this function using measurements of only some
of its values. This is a method known as GP regression. We
define a vector of N different points known as test points
Θf = [θf1 ... θfN ]. Further, we define a measurement model
as

zk = f(θk) + ηk, η ∼ N (0, R) (2)



Where zk is the measurement, θk is the training input which
is the point at which the measurements are taken and ηk is
the measurement noise. If we have m measurements of the
function we define z = [z1 ... zm] and their corresponding
input values Θ = [θ1 ... θm] to learn the function values for
Θf . In the original paper [11], it is shown that the state xf =[
f(θf1 )...f(θ

f
N )

]T
, which defines the extent, can be recursively

estimated using the following state space model

xf
k+1 = F fxf

k +wk, wk ∼ N (0, Qf )

zk = Hf (θk)x
f
k + ϵfk , ϵfk ∼ N (0, Rf )

(3)

where the measurement model is given by

Hf (θk) = K(θk,Θ
f )

[
K(Θf ,Θf )

]−1

Rf (θk) = k(θk, θk) +R−Hf (θk)K(Θf , θk)
(4)

where K in turn is defined as a covariance matrix where the
elements are made up of the elementwise evaluation of the
covariance function k(γ, γ′). The process model is defined by

F f = e−αT I, Qf =
(
1− e−2αT

)
K(Θf ,Θf ) (5)

The parameter for this model is a forgetting factor α.
1) Covariance functions: If, as is commonly done, the GP

is defined with zero mean, the covariance function is the
component that defines the GP and any prior information about
the shapes. Therefore, we want to encode the periodicity of
f(θ) in the covariance function. Such a function was presented
in the original paper and it was defined with three parameters,
σf , σr, and l.

It is also desirable to design a covariance function that
encodes axial symmetry since in many cases targets are
symmetric about the longitudinal axis. Since the longitudinal
axis is defined at θ = 0 this is equivalent to an even function.
One such function can be built using the smallest signed angle
function

ssa(θ) := π − [(π − θ)( mod 2π)] (6)

i.e. ssa(θ) is the only angle in (−π, π] such that ssa(θ) ≡ θ.
The absolute value of this function is both 2π-periodic and
even which is the property we sought. We define the symmetric
covariance function as

k(θ, θ′) = σ2
fe

− 1
2l2

(|ssa(θ)|−ssa|θ′|)2 + σ2
r + σ2

nδ(θ, θ
′) (7)

σn is another noise term added that makes it easier to model
sharp edges by adding a small term to each diagonal part of
the constructed covariance matrix. This has the added benefit
of regularizing the covariance matrix [18].

B. State space model for extended targets

To perform joint estimation of the extent and state of the
target an augmented state space vector is defined

xk =
[
xc
k ϕk (x∗

k) xf
k

]T
(8)

Where xc
k is the position of the centroid of the target from

which the extent is defined, ϕ is the heading of the target and

x∗
k are any additional kinematic states of the target. In the

original paper, these are the velocity in each direction in 2D
and the angular velocity ϕ̇. We use the same state space vector
in this paper.

For this augmented state space vector we define the follow-
ing state space description

xk+1 = Fxk +w, w ∼ N (0, Q)

zk = hk(xk) + ηk, ϵk ∼ N (0, Rk)
(9)

Where zk, hk(xk) and Rk are all augmentations given by
measurements of one scan of the target.

The random hypersurface model defines a measurement
equation for a target contour parametrized by a function f .

zlk = xc
k + p(θlk)f(θ

l
k) + ηlk

p(θlk) =

[
cos θlk
sin θlk

]
(10)

Where zlk is the measurement l at time k and θlk is the
corresponding angle of the origin of the measurement of the
target contour. θlk can be expressed both in a global frame
θlk

(G) and the local target frame θlk
(L) as

θlk
(L)

(xc
k, ϕk) = θlk

(G)
(xc

k)− ϕk

θlk
(G)

(xc
k) = ∠ (zk,l − xc

k)
(11)

Plugging the expressions for GP regression (3) into the
measurement equation (10) we attain

zlk = xc
k + pl

k(θ
l
k

(G)
(xc

k))H
f
(
θlk

(L)
(xc

k, ϕk)
)
xf
k + ηlk

= hl
k(xk) + ηlk, ηlk ∼ N (0, Rl

k)

Rl
k = pl

k(x
c
k)R

f
(
θlk

(L)
(xc

k, ϕk)
)
pl
k(x

c
k)

T +R

(12)
This is a non-linear measurement model and therefore needs
to be estimated using a non-linear filtering technique. It should
be noted that this is an implicit equation due to the dependence
of zlk contained in θlk

(G)
(xc

k).
For the motion model, the motion can be described with a

linear state space model and this can be combined with the
process model for the extent as

F =

[
F̄ 0
0 F f

]
, Q =

[
Q̄ 0
0 Qf

]
(13)

Where F f and Qf are given by equation (5) and F̄ and Q̄ are
given by the motion model used. For this work, we use the
constant velocity model with constant turn where we define

F̄ =

[
1 dt
0 1

]
⊗ I3,

Q̄ =

[
dt3

3
dt2

2
dt2

2 dt

]
⊗

σ2
c 0 0
0 σ2

c 0
0 0 σ2

ϕ

 (14)

where dt is the sampling time and σc is the process noise
variance for position and σϕ is the process noise variance for
the heading angle.



C. The PMBM filter
To model the problem of tracking multiple targets, the

PMBM filter utilizes Random Finite Sets (RFS) to model both
the unknown number of targets and the unknown number of
measurements. The set of object states at time k is modeled as
Xk = {x1

k, · · · , x
nk

k } and the measurements collected at time
step k are defined as Zk = {z1k, · · · , z

mk

k } with zik denoting a
single measurement.

The PMBM conjugate prior is a combination of a PPP
(Poisson Point Process) and an MBM (Multi-Bernoulli Mix-
ture), where the PPP represents the targets that have not been
detected Xu

k and the MBM represents the targets that have
been detected Xd

k. A PMBM density is fully parametrized by

Du
k , {w

j
k, {r

j,i
k , (f j,i

k )}i∈Tk|k′}j∈Jk|k′ (15)

where Du
k is the intensity of the PPP for the unknown targets.

The Bernoulli modeling target i is represented by the probabil-
ity density f j,i

k which represents both the kinematic state and
the extent of the target, along with any additional information
that can be inferred from it. A Bernoulli set also contains
a parameter r, representing a target’s existence probability.
The different components in the Multi-Bernoulli Mixture are
represented by an index j ∈ J and correspond to a data
association hypothesis with the weight wj representing the
relative likelihood of each hypothesis. Additional assumptions
are that new targets appear in the region according to a
PPP with birth intensity Db

k, targets survive with probability
PS and evolve with a transition density gk|k−1. Clutter is
modeled as a PPP with rate λc. Each target is detected with
a probability PD and if detected, generates measurements
according to a PPP with rate λm(xk) and a spatial distribution
l(ZC |xk), given by the chosen target model. ZC is the subset
of measurements assigned to a specific measurement cell C,
and lC is the likelihood of this assignment. Recursions based
on these assumptions are presented in the original paper on
the PMBM filter for extended objects [3]. It has also been
extended to a full tracker by using sets of trajectories [9].

D. Estimating measurement rate
The Poisson rate λm(x) represents the cardinality of the

measurement set, i.e., the expected number of measurements.
One assumption is a constant rate but this is not in good
agreement with the physical reality of many sensors since
the number of returns scales by distance. One approach was
developed in [19] and has since been used as part of the GGIW
target model in several works such as [3], [20]. It has also been
used in combination with the Gaussian Process model [12]. It
utilizes that a Poisson rate can be estimated using a gamma
distribution due to it being the conjugate prior for the Poisson
distribution. A gamma distribution can be parametrized by
parameters α and β, where α is the shape parameter and β is
the inverse scale parameter, i.e. λm ∼ G(α, β). These can be
updated using the following recursions

αk|k−1 =
αk−1

ηγ
, βk|k−1 =

βk−1

ηγ

αk = αk|k−1 + |ZC |, βk = βk|k−1 + 1

(16)

The forgetting factor ηγ is defined by ηγ = 1
1−we

, which
means that only information from the time steps within the
window length is trusted. These parameters are also incorpo-
rated into the state vector for each target.

III. GP IMPLEMENTATION

Given the state space model presented above, we now
provide the specific closed-form expression for the PMBM
filter recursions for this model. We then discuss specific con-
siderations for using the GP model in the PMBM framework
and present the approximations used to make the tracker
computationally feasible. We use the same notation as [3] for
the derivations.

A. PMBM Filter Recursions with a GP target model
For the special case where the probability of survival PS is

constant and the following holds

Du
k−1(x) =

Nu∑
n=1

dunN (x;xu
n,P

u
n)G(αu

n, β
u
n)

f j,i
k−1(x) = N (x;xj,i

k−1,Pk−1)G(αj,i
k−1, β

j,i
k−1)

gk|k−1(x|x′) = N (x;Fx′,Q)

(17)

i.e., the probability distribution representing the target state in
the Bernoulli components is a gamma-gaussian distribution
and the PPP intensity is a linear combination of gamma-
gaussian distributions, i.e., a gamma-Gaussian mixture. The
state transition density for the gaussian and the gamma com-
ponent is assumed to be independent, which enables separate
prediction of the state and extent from the measurement rate.
This assumption was used in [19]. The closed-form expression
is then given by

Du
k|k−1(x) = Db(x)

+ PS
Nu∑
n=1

dunN (x;Fxu
n,FP

u
nF

T +Q)G(αu
n, β

u
n)

wj
k|k−1 = wj

k

rj,ik|k−1 = rj,ik PS

f j,i
k|k−1 = N (x;Fxj,i

k−1,FP
j,i
k−1F

T +Q)G(αj,i
k|k−1, β

j,i
k|k−1)
(18)

For the update step, we define the following assumption
regarding the single measurement likelihood

l(z|x) ≈ N (z;h(x),R) ≈ N (z;Hk,Rk) (19)

i.e. h(x) defined in (12) is approximated by its jacobian Hk.
We further define the following

f j,i
k|k−1(x) = N (x;xj,i

k|k−1,P
j,i
k|k−1)G(α

j,i
k|k−1, β

j,i
k|k−1)

Du
k|k−1(x) =

Nu∑
n=1

dunN (x;xu
n,P

u
n)G(αu

n, β
u
n)

lC(α, β,x,P, ZC) =
Γ(α+ |ZC |)βα

Γ(α)(β + 1)(α+|ZC |)|ZC |!
×

∏
z∈ZC

N (z; z̄,Sk)

(20)



where lC is defined as the predicted likelihood of measurement
cell C, the parameters z̄ and Sk are given by a Kalman Filter
update step and are as such defined by the matrices Hk, Rk

and Pk and the prior target state xk of the target corresponding
to the measurement cell. It is again assumed that the measure-
ment rate and the combined state and extent are independent.
The predicted likelihood of the gamma component was derived
in [19].

If we further assume that the probability of detection PD is
constant then we can derive the following closed-form expres-
sions. The PPP component representing undetected targets is
updated as

Du
k (x) = QDDu

k|k−1(x) (21)

I.e. the weight of each undetected target in the mixture is
updated with the probability of misdetection, defined as

QD = 1− PD (22)

The MBM is updated based on the associations made of
measurements to measurement cells. The weights for the
association hypotheses are updated as

wj,A
k =

wj
k|k−1

∏
C∈A Lj,C∑

j∈Jk|k−1

∑
A∈Aj

wj
k|k−1

∏
C∈A Lj,C

(23)

i.e. the weight of an association hypothesis A is given by
a product of the likelihoods L of all measurement cells,
normalized over all association hypotheses.

The updated parameters for the gaussian distributions are
given by a Kalman filter update step and the updated gamma
parameters for a measurement cell are given by (16).

The form of the update step for measurement cell C depends
on if the measurement cell is associated with a detected or
undetected target. The current time index k is omitted for
brevity. For detected targets, we have two cases to consider

Lj,C =

{
1− rj,iCk|k−1 + rj,iCk|k−1Q

D |ZC | = 0

rj,iCk|k−1P
DlC(α

j,i, βj,i,xj,i,Pj,i, ZC) |ZC | ≠ 0

rj,Ck =


r
j,iC
k|k−1

QD

1−r
j,iC
k|k−1

+r
j,iC
k|k−1

QD
|ZC | = 0

1 |ZC | ≠ 0

f j,C
k (x) =

{
N (x;xj,iC

k|k−1,P
j,iC
k|k−1)G(α

j,iC , βj,iC ) |ZC | = 0

N (x; x̂j,iC , P̂j,iC )G(αj,iC , βj,iC ) |ZC | ≠ 0
(24)

If measurements are assigned to undetected targets, there are
also two cases to consider, since it is assumed that a cell
containing more than one measurement cannot be clutter-
originated. Note that the result is a component of the MBM

since the target has now been detected.

Lj,C =

{
Dc + PD

∑Nu

n=1 d
u
nlC(α

u
n, β

u
n,x

u
n,P

u
n, ZC) |ZC | = 1

PD
∑Nu

n=1 d
u
nlC(α

u
n, β

u
n,x

u
n,P

u
n, ZC) |ZC | > 1

rj,Ck =

 PD ∑Nu

n=1 du
nlC(αu

n,β
u
n,ZC ,xu

n,P
u
n)

Dc+PD
∑Nu

n=1 du
nlC(αu

n,β
u
n,ZC ,xu

n,P
u
n)

|ZC | = 1

1 |ZC | > 1

f j,C
k (x) =

Nu∑
n=1

dunN (x; x̂u
n, P̂

u
n)G(αu

n, β
u
n)

(25)

B. Handling nonlinearities in the measurement equation

Since the measurement equation (12) is nonlinear there
arises a need to use non-linear filtering to deal with this non-
linearity and estimate H. The original paper on the GP model
simply applies the Extended Kalman Filter [11]. Subsequent
work has been done to improve this method by dealing
with the nonlinearities differently or augmenting the approach
[14]–[16]. We propose using the iterated Extended Kalman
Filter (IEKF) to improve the linearization. It has been shown
that applying the IEKF is equivalent to Gauss-Newton (GN)
Optimization of the maximum likelihood function defined as

q(ξ) =

([
zk
x̂

]
−
[
h(ξ)
ξ

])[
R 0
0 P

]−1 ([
zk
x̂

]
−

[
h(ξ)
ξ

])
(26)

Where h(ξ) and zk are defined by (9) and (12). It is therefore
Maximum a Posteriori estimator of the state [21]. Equivalently
the IEKF will suffer from the same shortcomings as Gauss-
Newton methods, in particular when there are several local
optima or the initialization point is far away. In this specific
case, h(x) is not globally convex and has several local optima.

To mitigate this, we suggest designing a set of heuristic
constraints for the initial point of the optimization to ensure
that it converges on the most relevant local optimum. In [15],
the concept of negative information is used to augment the
model. Inspired by this, we can define constraints for the cen-
troid xc. Consider a return from a laser ranging sensor hitting
an extended object. We can then state the following constraint
for xc := (xp, yp) given more than two measurements

αmin < atan2(
yp

xp
) < αmax

min rz <
√

(yp)2 + (xp)2
(27)

Where αmin/max is the maximum and minimum angle of
all measurements and min rz is the radial distance of the
measurement closest to the sensor. I.e., the center of the
extended object’s angle with regards to the sensor should be
between the minimum and maximum angle, and it should be
further away than the closest measurement return. Enforcing
this condition prior to optimization by setting xc according to

xc = pol2cart(αmax/min, ||xc||)
xc = pol2cart(∠xc,min rz +minxf )

(28)

means that xc will be initiated behind the sensor wall.



Another issue is that this model is generally not observable,
especially with few measurements. Therefore there is no
unique solution and the solution depends on the choice of prior
used to initialize the estimate. Therefore, the choice of prior
is of key importance. Particularly the general characteristics
of the extent prior as well as the prior value of the heading
need to be specified.

C. Initialization and birth process

In the PMBM framework, the prior estimates are encoded in
birth process intensity Db. By using the mixture representation
of the PPP intensity function, i.e.

D(x) =
∑
i∈I

wi
bp

i
b(x) (29)

we can define several priors and since the weight of the
PPP components will be updated based on the likelihood of
the measurements, the resulting estimate will be weighted.
Selecting these priors is still not a trivial choice and in most
cases are tuned to fit the particular problem. For instance,
in [12] where a gaussian process model was used to track
vehicles, the prior for the extent (i.e. xf

0) was chosen to
correspond to the extent of a real vehicle. In this work, we
assume an expected maximum range of the sensor and use
it to set the positional component of the birth process. I.e.,
spread the mixture components uniformly beyond the edge of
the circle defined by the maximum range of the sensor. By
placing it beyond, the centroid will be placed behind the first
measurements. The heading can be defined by the direction
toward the sensor and the direction of the velocity vector
can be defined similarly. The magnitude of the vector should
be tuned to the expected velocity of the targets. The angular
velocity can be assumed to be 0 rad/s. The covariance of all
these kinematic states is inflated to ensure that the mixture
components can represent a variety of states. With regards to
the extent, it should be tailored to the targets that are expected
to appear. In this case, because we are tracking ships, we
define the extent prior as a ship-like shape with a pointed bow
and a flat stern with symmetry along the vertical axis. If it is
desirable to track targets with very different shapes, one can
also include different shapes in the birth intensity function.

D. Mixture Reduction

Mixture reduction is also a necessary tool used in the birth
process to reduce all the components in the PPP component
into one Bernoulli. It can also be used to merge Bernoullis
that are similar. The merging is done using standard Gaussian
mixture reduction for the kinematic and extent states and by
the method derived in [19] for the parameters of the gamma
distribution.

E. Reducing Associations

To reduce the number of data associations, gating is per-
formed as an initial step. Gating for the GP model was
presented in the original paper and the same method is used
in this work [11]. This separates the targets and measurements
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Fig. 1. Visualization of the simulation scenario, along with the extent and
measurements visualized for a single timestep

into independent subgroups. Further reduction of association
hypotheses is done using the stochastic optimization method
presented in [5] to find the most likely associations.

IV. SIMULATION STUDY

In this section, we present the result from a Monte Carlo
simulation study where the performance of the PMBM-tracker
using the presented GP model is compared with the implemen-
tation using the GGIW model as presented in [9] 1.

A. Simulation Scenario

The scenario consists of 4 ships approaching from the edge
of the surveillance area and traversing it to the opposite end
including a turning maneuver. See Fig 1 for a detailed view.
The scenario lasts for 250 timesteps and two vessels spawn
at the edge of the surveillance area every 20 timesteps and
persists for up to 200 timesteps. The extent is modeled by a
ship that is 6 meters long, 3 meters wide, and has a pointed
bow where the full width is achieved 2 meters behind it.
The measurements are generated by simulating a LiDAR with
a simulated maximum range of 100 m, angular resolution
0.25◦ and a modeled radial accuracy of 0.1 m, measurements
are only generated if they hit a simulated hull and only
one measurement is generated per angle, which simulates
occlusion. In addition, clutter is generated using a PPP with
λc = 20 and a uniform spatial distribution. The results are
averaged over 100 Monte Carlo simulation runs.

B. Parameters

The PMBM parameters are chosen as follows, probability
of detection PD = 0.9, probability of survival PS = 0.99,
and clutter rate λc = 20. The gating probability is set at
PG = 0.99, the pruning parameters are 0.01 for the existence
probability, 0.01 for PPP mixture components, and 0.01 for
multi-Bernoulli mixture components. Both target models use
σc = 0.2 m as the noise parameter for the CV model and σr =
0.3 m for the measurement noise, the GP model uses σϕ = 0.1
as noise for the constant angular velocity model. Both target
models use 20 for the length of the gamma prediction window.

1The implementation for the GGIW model was taken from
github.com/yuhsuansia/Extended-target-PMBM-tracker and this
implementation was modified for use with the GP model



For the GP target model, we use 9 test angles to parametrize
the extent and the hyperparameters are σf = 0.5 m, σr = 0.5
m, σn = 0.001 m, l = π/4 and the forgetting factor α = 0.01.
The maximum amount of IEKF iterations is 50. For the GGIW
target model, we use 200 for the extent prediction window.
The birth spatial density is defined according to the method
defined above with 36 components and a range of 105 m and
a velocity magnitude of 2 m/s. The extent prior is roughly
equivalent to the true extent for the GP model and for the
GGIW model it models an ellipse with the same length and
width defining the semi-axes, this is combined with the prior
heading to calculate a prior value for the shape matrix X .
The prior value of the gamma distribution is α0 = 1000 and
β0 = 100. The covariance of the Gaussians is inflated to ensure
coverage of the whole circle, the positional component is 20
m, the velocity components are 3 m/s, and for the GP model
the heading component is π and the angular velocity is π/4.
In the case of the extent, for the GP model the prior is given
by the covariance function.

C. Performance Evaluation

To compare the performance of the trackers, the GOSPA
metric [22] is used to provide a single metric for the perfor-
mance of a multi-target tracking algorithm by incorporating
localization error, missed targets, and false targets into a
single metric. However, due to the different state spaces of
the different target models, the distance measure is only
comparable between the shared states, the position, and the
velocity. Therefore these states are used to calculate the
localization error. The parameters for the GOSPA metric
were cut off c = 10 and power p = 2. To compare the
extent estimates of the target models we use the process of
associating estimates to targets to generate additional measures
that are comparable between them. One such measure is the
Intersect-Over-Union (IOU) metric, which has been used in
previous work to compare methods for extent estimation [11],
[14]. To calculate the IOU metric for the GGIW model, the
shape matrix X is decomposed to retrieve the length of the
semi-axes, corresponding to the 2-σ ellipsoid, and the ellipse
orientation. The heading error is calculated using the same
method. Finally, the computation time for each run is also
presented.

D. Results

The metrics are presented in Table I. Note the disparity
of the IOU metric. This is primarily due to the inability of
the GGIW model to model contour-generated measurements,
since the GGIW model assumes a uniform distribution, and
thus centers the ellipse on the contour instead, which causes
large localization errors and large errors in extent estimation.
Note also the larger heading error, showing an inability to
estimate the heading as a separate state. The evolution of the
metrics during the simulation run is shown in Fig 2. Here we
can observe that the GGIW model exhibits track loss when
the target ships pass the LiDAR and the origin points of the
measurements change from the front to the stern or vice versa,

TABLE I
MEAN VALUE OF METRICS FOR THE SIMULATED SCENARIO

Model GP GGIW
GOSPA 4.15 7.54
Loc. Err. 3.40 6.45
Missed 0.10 0.57
False 0.28 0.45
IOU 0.60 0.22
Heading (rad) 0.46 1.62
Time (s) 63.71 46.30
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Fig. 2. The evolution over the course of the simulation run for selected
metrics

which happens around timestep 170. The GP model is more
computationally expensive, which is to be expected due to the
use of GN optimization.

V. TEST DATA

In this section, we present the result from real LiDAR data
gathered from tests in Trondheim utilizing the two platforms
milliAmpere and milliAmpere2 in the Trondheim canal [23].

A. Test scenario

We present two separate scenarios, one with a single vessel
performing maneuvers in front of the sensor in the canal

-40 -20 0 20 40 60 80

E (m)

-25

-20

-15

-10

-5

0

5

10

N
 (

m
)

-40 -30 -20 -10 0 10 20 30 40

E (m)

-20

-10

0

10

20

30

40

N
 (

m
)

Fig. 3. Visualization of the test scenarios, along with the extent and
measurements visualized for three different timesteps. Note measurements
generated by the wake, as well as the occlusion in the second scenario.



(see Fig 3a) and one with two vessels traveling in separate
directions in the canal and passing each other (see Fig 3b). The
data from the first scenario was gathered using milliAmpere2
which is equipped with two Ouster OS1 32 LiDARs, these
two point clouds were combined and the returns from land and
static obstacles along the canal were filtered out using manual
land masking and the point cloud was transformed to 2D by
only retaining the point closest to the sensor in each angular
resolution sector. The second scenario was published in [24]
(as scenario 13) and is reused in this work. Note that for this
scenario the ground truth data gathered was only positional
GPS data without heading.

B. Parameters

Most of the parameters used are similar to the simulation
study. The range used to define the birth density is reduced to
40 and 60 m respectively due to the observed range at which
the LiDARs were able to detect the target vessels. For the
second scenario, α0 was set to 500 to account for the lower
sensor resolution. The extent priors were set such that the
length and width of the prior were roughly equivalent to the
target vessels, but the same prior was used to represent both
ships in the second scenario. In addition, some tweaks were
made to attempt to mitigate some observed effects that are
not modeled. To account for wake clutter, the clutter density
was increased to λc = 60 and λc = 100 for the first and
second scenario respectively, while the gating probability PG

was set to 0.95 for the same reason. Finally, to account for
errors related to sway affecting the pitch of the LiDAR sensor,
σr was set to 0.5.

C. Performance Evaluation

We use the same metrics that were used in the simulation
study, with the ground truth data gathered used to calculate
the metrics. For the first scenario, ground truth was measured
by using a dual antenna INS system and the extent of the
vessel was measured to be able to compare the estimated extent
with the ground truth. For the second scenario, because only
positional data was available, the heading was inferred from
the velocity vector, which is a significant source of error for
the calculation of the IOU and heading error metrics.

D. Results

The first scenario is quite simple from a target tracking
perspective, it is simply a test of target birth and the ability
of the target models to track the ship while it is performing
complex maneuvers. The relevant metrics are presented in
Table II, and the plots are shown in Fig. 4. The GP model is
able to track the target over the whole scenario. However, as
the target gets closer to the sensor the IOU measures degrade,
this is due to wake clutter being detected by the LiDAR which
is associated with the target, affecting the extent estimate. The
estimate recovers when the vessel completes a turn. As the
target vessel moves away, the track is lost, note also that as
this happens the heading estimate flips to the reverse heading,
which constitutes another local optimum of the cost function.
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Fig. 4. The evolution over the course of the single target test run for selected
metrics

TABLE II
MEAN VALUE OF METRICS FOR THE REAL LIDAR DATA

Test 1 Test 2
Model GP GGIW GP GGIW
GOSPA 1.40 2.32 5.69 4.70
Loc. Err. 1.12 1.94 6.02 4.10
Missed 0.03 0.05 0.08 0.12
False 0.00 0.00 0.02 0.01
IOU 0.38 0.10 0.18 0.27
Heading (rad) 0.84 1.26 0.56 2.25
Time (s) 112.06 82.22 474.04 213.49

The GGIW model is unable to maintain a track during the
turning maneuver, but initiates a new track to continue tracking
the target.

The second scenario is more complex, as it entails two
targets, with one target being occluded by the other. The
metrics are given in table II and the evolution over time is
shown in Fig. 5. Here the GGIW model has a superior GOSPA
score due to a lower localization error as well as a higher IOU.
This is due to the disruptive effect of wake clutter on the GP
model, which causes the extent estimates to get significantly
worse when the wake is detectable, around timestep 1200,
this also affects the centroid estimate, resulting in a larger
localization error. The GGIW model does not suffer from the
same shortcoming, due to the assumption that measurements
are uniformly distributed.

VI. CONCLUSION

This paper has presented the use of the Gaussian Process
model as a target model in the PMBM-tracker, presented
an improvement of the GP target model by using Gauss-
Newton optimization, and suggested a heuristic method to
mitigate the fact that the measurement model is non-convex.
We have also highlighted the need for a well-designed birth
density and provided an example. More robust ways of solving
these issues are an area of further research. Furthermore, we
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Fig. 5. The evolution over the course of the multi target test run for selected
metrics

have demonstrated the resulting tracker on both simulated
and real data and compared the performance against the
standard GGIW-PMBM tracker. It shows that the GP model
can generally track targets more accurately, as measured by
GOSPA, and provide a better extent estimate when only a part
of the target is detected by the sensor, as measured by the IOU
metric. It also enables a correct heading estimate, since the
heading is explicitly modeled as a part of the state, however
local optima related to the heading is an issue that needs to
be resolved. In addition, applying the method to real maritime
data shows that wake clutter and occlusions are issues that
need to be addressed. This is also an area that is of interest
for further work.
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