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Abstract— In recent years, a risk-based approach has been 

proposed to better manage EM-related risks of electronic 

systems. Within this approach it is critical to detect potential 

risks as much and as early as possible. Unfortunately, many 

hazards (potential contributors to risks) are “hiding” deep in the 

system and/or can only appear when “excited” under certain 

conditions. One such example is electromagnetic (EM) 

resonance of components and structures (e.g., traces, heatsinks, 

PCBs, enclosures) within electronic systems. These resonances 

can further lead to unintended and increased coupling effects 

which may result in seriously hazardous situations. In this 

paper, we consider the relatively simple but basic case of a trace 

(modelled as a dipole) within a closed metallic enclosure. Both 

quantitative calculations and full-wave EM-simulation results 

reveal the complexity of the possible resonance mechanisms and 

interactions.  
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I. INTRODUCTION 

Due to the rapid development of electronic technologies 
and their use in e.g. health applications, safety of these 
technologies is becoming more and more crucial. One of the 
notable factors that may greatly affect the safety of electronic 
systems are EMI (Electromagnetic Interference) issues. When 
talking about risks which are related to EMI, one normally 
refers to two aspects: EM emission and EM immunity. Thus, 
to mitigate the EMI related risks, both aspects ought to be 
addressed. Some related work has been performed in the past. 
For example, models and methodologies have been developed 
to emulate and predict the electromagnetic (EM) emissions of 
PCBs. Also, the mechanism of coupling effects of incident 
EM waves on PCBs inside electronic systems was 
investigated [1][2].  

For already quite a long time, the approach that is widely 
adopted by industry to manage EMI-related risks, is the “rule-
based” approach. The essence of this approach is that as long 
as the design of electronic system/device follows certain 
design guidelines and passes relevant testing standards, it is 
assumed that EMI related risks are sufficiently managed. 
However, this traditional approach is not sufficient any more 
for today’s critical applications. First, the standards or 

guidelines applied in “rule-based” approach, inevitably  lag 
behind the development of electronic technology. Second, it 
has been proven that testing only can never guarantee the 
safety of a system or device [3]. To overcome the above, a 
new “risk-based” approach was proposed and has already 
caught wide attention [4][5][6]. In this approach, risk 
management is the essential process.  

Before managing the potential risks, the hazards need to 
be clearly identified. However, since some of them can only 
show up under very specific conditions, they are often difficult 
to be discovered and thus can cause unexpected and 
incomprehensible problems during operation of the system. 
One example is the EM resonance of components in electronic 
systems. In the past, several researches have studied EM 
resonances [7][8][9]. These previous studies targeted EM 
resonances of enclosures together with apertures or slots and 
provided us with good views on the relationships between EM 
resonances and openings. However, when EM resonances are 
generated in an (almost) closed system, more complex 
influences will arise due to the interactions between the 
internal components and the closed enclosure. To better 
understand the mechanism of such interactions and 
accordingly to be able to identify possible resonance-related 
risks better upon which more appropriate mitigation measures 
can be taken, in this paper a simplified electronic system 
represented by a dipole and closed metallic box is studied. It 
is shown that this simple case already leads to some quite 
surprising results where the resonant frequency of the  internal 
dipole deviates significantly from its value in free-space. The 
latter would typically be used as in estimate in current 
practice. 
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Fig. 1. Modeled electronic system (a 30 mm dipole in a closed metallic box 

with inner dimension of 208 mm×202 mm×34 mm). 
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The remainder of this paper is organized as follows. In 
Section II, the theoretical basis of the resonance frequencies 
of both the dipole and the metallic enclosure is given and the 
calculated results are confirmed with simulations by using a 
full-wave EM-solver (CST Studio Suite 2020).  Furthermore, 
in Section III, the influence on resonant frequencies, as result 
of the interactions between the dipole and the enclosure, is 
explored. Finally, the conclusions and future work are 
described in Section IV. 

II. RESONANCES OF THE STAND-ALONE DIPOLE AND BOX 

To find out the interactions between the components and 
the enclosure of an electronic system/device, a model of such 
a system is modeled in a full-wave EM-solver. To simplify the 
analysis, our modeled system (Fig. 1) only consists of one 
component (a 30 mm dipole) and a closed metallic enclosure. 
However, as it will be shown in the next section, even for such 
a simplified model, the interactions can be rather complicated. 
Thus, instead of directly analyzing the whole electronic 
system, the resonances of the two separate parts, the dipole 
and closed metallic box, are analyzed separately. By doing 
this, the necessary “baselines” can be obtained and the 
changes due to the interactions can be figured out more easily.  

A. Dipole resonance 

The simplest dipole consists of two wires with equal 
lengths and its source in the middle. Since a dipole is usually 
fed exactly at its center, it is also known as a “balanced 
antenna” [10]. At its intrinsic resonance, the antenna will only 
have a real part impedance (resistance), which means that the 
imaginary part (reactance, caused by inductance and 
capacitance) vanishes at the resonant frequencies. 
Theoretically for a dipole antenna in free space, to be 
effectively resonant, it should be electrically half wavelength 
(0.5 λ) at its resonant frequencies. However, in practice, due 
to the “end effect”, the actual dipole length for its first resonant 
frequency is slightly shorter, between 0.47 λ to 0.48 λ, 
depending on radius of the dipole [11]. A thinner dipole will 

have a first resonant frequency closer to 0.48 λ [11]. To verify 
this, the above-mentioned 30 mm dipole is simulated (being 
excited by a 1 V Gaussian excitation signal, through a 50 Ohm 
discrete S-parameter port at the dipole center) in free space 
with a full-wave EM time domain solver (Fig. 2(a)). To reduce 
the influence of the dipole thickness, the thickness was set to 
“infinitely thin”. For the 30 mm dipole, its theoretical first 
resonant frequency should be around 4.796 GHz (0.48 λ), 
which is verified by the simulated result (shown in Fig. 2(b)). 
In Fig. 2(b), the imaginary part of the dipole impedance is 
shown. As discussed above, since the resonant frequency is a 
frequency at which the dipole has zero imaginary impedance, 
it can be found that the first resonant frequency of the dipole 
is about 4.773 GHz, which is very close to the ideal value 
(4.796 GHz).   

B. Box resonance 

The box resonances refer here to the standing wave 
resonances that can exist in the fully closed metallic box. The 
frequencies at which such standing wave resonances exist can 
be calculated by [12]: 

 𝑓 = (
𝑐

2√𝜀𝑟𝜇𝑟
)√(

𝑙

𝑎
)
2

+ (
𝑚

𝑏
)
2

+ (
𝑛

𝑑
)
2

 () 

Here, f is the resonant frequency, c is speed-of-light in air, εr 
and μr are the relative permittivity and permeability, 
respectively. The mode index of each resonance is indicated 
by l, m and n (all are integer numbers while at least two of 
them should be non-zero [13]) along the x, y and z axes, 
respectively. Further, a, b and d represent the corresponding 
dimensions along these three directions (as indicated in Fig. 

TABLE I 

CALCULATED STANDING WAVE RESONANT FREQUENCIES 

      

Mode 

(lmn) 

f(GHz) Mode 

(lmn) 

f(GHz) Mode 

(lmn) 

f(GHz) 

110 1.035 330 3.015 530 4.238 

210 1.622 420 3.244 350 4.297 

120 1.650 240 3.301 610 4.390 

220 2.070 430 3.644 101 4.470 

310 2.287 340 3.674 011 4.473 

130 2.341 510 3.681 160 4.513 

320 2.624 150 3.782 111 4.531 

230 2.653 520 3.899 620 4.571 

410 2.978 250 3.983 201 4.641 

140 3.056 440 4.140 021 4.655 
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Fig. 3. Comparison of calculated and simulated resonant frequencies (a) 

Absolute frequencies (b) Frequency deviations. 

 

(a) 

 

(b) 

Fig. 2. Full-wave EM-simulated single dipole. (a) Modeled 30 mm dipole 

in air. (b) Imaginary part of the input impedance of the dipole. 

 



1). Table 1 lists the lowest resonant frequencies and their 
corresponding resonance mode indexes in the fully closed 
metallic enclosure with the dimensions given in Fig. 1. 

Similar to the case of dipole resonance, these theoretical 
results were verified with simulations with a full-wave 
eigenmode solver. This comparison is shown in Fig. 3. The 
maximum difference between the analytically calculated and 
simulated results is less than 0.07%. 

It is worth noting that from equation (1) it can also be 
concluded that, if keeping other parameters constant, the 
frequency of each resonance mode will decrease when the 
dimensions of the box increase. This will be further used in 
Section III. 

III. RESONANCE INTERACTIONS 

Now that the dipole and box resonances have been 
analyzed and verified, their interactions can be investigated by 
putting the dipole into the closed metallic box. For the 
convenience of the further analysis, the dipole is located 
exactly at the center of the box.  

First of all, it was investigated if the resonant frequencies 
of the combined structure are simply the “combination” of the 
resonant frequencies of the two separate parts. Therefore, in 
the combined structure, both the first resonant frequency 
(4.773 GHz) of the dipole (analyzed and simulated in Section 
II.A) and all the possible box resonances that related to the 
box (Section II.B) were expected to be found.  

The combined structure was simulated again with the full-
wave EM time domain solver and the new results are 
compared with those of the stand-alone dipole and box in Fig. 
4. From the results in Fig. 4, the first resonant frequency of the 
dipole cannot be found, which indicates that the assumption 

of “independence” is incorrect. Instead, two special 
frequencies can be noticed: 4.098 GHz and 4.47 GHz (marked 
in red). By further checking their E-field patterns in Fig. 5, two 
particular findings are obtained which do not immediately link 
with general intuition. The first one is that the first resonant 
frequency of the dipole is found around 4.098 GHz rather than 
at the expected 4.773 GHz (hereafter referred to as “Q1”). 
Indeed, Fig. 5(a) confirms that this frequency is caused by the 
dipole, not by the box, the other one is that the resonance at 
4.47 GHz (one of the original standing wave resonance) 
disappears (hereafter referred to as “Q2”). Note that, due to 
the simulation deviation, this simulated 4.47 GHz resonance 
actually corresponds to the 4.473 GHz resonance in the 
analytical calculations. 

To investigate the above two findings, several assumptions 
were explored. For Q1, since the shift of first resonant 
frequency of the dipole took place only after adding the closed 
metallic box, it is reasonable to assume that there are strong 
interactions between the dipole and the box, leading to such a 
significant frequency shift. For Q2, since adding the dipole 
only resulted in the disappearance of certain resonant 
frequencies (not all the resonant frequencies) and each box 
resonance can only exist under certain conditions (e.g., source 
locations, orientations), it is reasonable to assume that adding 
the dipole invalidated the boundary conditions of these 
disappearing box resonances. 

To be able to explain the phenomena related to Q1 and Q2, 
further investigations were done as follows. First, to explain 
Q1, the dimensions of the box were gradually changed. 
Instead of changing only one or two dimensions at a time, a 
parameter named the “scale factor” (sf) was used to 
simultaneously change all the three dimensions (length, width 
and height) of the box. As has already been mentioned in 
Section II.B, the frequency of each resonance mode will 
decrease with increased box dimensions, which is 
demonstrated by simulations and shown in Fig. 6. In Fig. 6, 

         
(a)                                               (b) 

Fig. 4. Comparison of resonant frequencies with/without dipole. (a) Empty 

box (without dipole). (b) Box with dipole (along x-axis). 
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(b) 

Fig. 5. E-field patterns of 4.098 GHz and 4.47 GHz. (a) 4.098 GHz. (b) 4.47 

GHz. 

 



the x-axis and y-axis represent the sf and frequency, 
respectively, while each curve indicates one resonance mode. 
When gradually changing the sf (x-axis) from 0.2 to 1 (sf = 1 
represents the original box with the dimensions indicated in 
Fig. 1), it can be clearly seen that the frequencies of each 
resonance mode decrease. In addition, the larger the box, the 
smaller the (frequency) distance between the resonant 
frequency of the dipole and the enclosure. This behavior 
makes our analysis of the influence of interaction between the 
dipole and the enclosure on the resonances more difficult: with 
the box becoming bigger, all the resonant frequencies related 
to the box will move closer to the dipole resonance, causing it 
very hard to pick out the target dipole resonant frequency. 
Even worse, in Fig. 7 (imaginary part of impedance), when 
looking at the resonances from the perspective of impedance 
(as discussed in Section II, resonance happens when the 
imaginary part of impedance is zero), it is found that with the 
box becoming bigger (represented by the increase of the sf in 
the x-axis), the resonance modes with higher frequencies can 
move down and coincide with lower ones, which means the 
target dipole resonance could be “invisible” by these 
“coincidences”. The above two problems make it almost 
impossible to directly and clearly analyze what happens in the 
combined structure. Thus, other solutions have to be found. 

Since the box resonances are the main disturbing factors 
that prevent us from investigating Q1 and answer the question 
why the dipole resonant frequency is much lower than that in 
free-space, a new case with only one plate and one dipole (Fig. 
8) was proposed. The whole idea is to first decompose the box 
into metallic plates and then add the plates one by one. By 

doing this, the possible influences of these plates can be 
revealed. 

In Fig. 8, a dipole is put above one single metallic plate.  
Note that the dipole could be either parallel or perpendicular 
to the plate. For simplification purpose, only the configuration 
of the parallel case is shown in Fig. 8. However, the simulation 
results for both cases are included in Fig. 9. To further 
strengthen our analysis, image theory [14] was adopted, which 
assumes the metallic plate to be infinite. Hence, infinite plates 
are used in the full-wave solver (also in the following two-
plate cases) by correctly setting the corresponding boundaries. 
The height of the dipole was swept from 2 mm to 100 mm 
with 2 mm step width. This sweeping operation corresponds 
to changing the sf in the box case. For the parallel case, height 
is the distance between the dipole center and the plate while 
for the perpendicular case, height is the distance between 
dipole bottom end point and the plate.  Since resonances are 
related to the dipole’s input impedance Z11, that input 
impedance is used here for comparison and analysis. For each 
height value, the frequency point where the imaginary part of 
impedance (Z11) first becomes zero is extracted as the first 
resonant frequency of the dipole. This leads to the relationship 
between height and corresponding first resonant frequency of 
the dipole as shown in Fig. 9 (including the perpendicular 
case).  

 
(a) 

 

(b) 

Fig. 9. First resonant frequency versus height in one plate case. (a) Parallel 

dipole. (b) Perpendicular dipole. 

 

 

Fig. 8. Case of one dipole above one plate. 

 

Fig. 6. Frequency of each resonance mode versus box dimension (sf). 

 
(a) 

 
(b) 

Fig. 7. Imaginary part of the input impedance. (a) sf from 0.2 to 0.5. (b) sf 

from 0.5 to 0.9. 



In Fig. 9, when looking at the trend of the first resonant 
frequency of the dipole with changing height (both parallel 
and perpendicular cases), it can be seen that the first resonant 
frequency “oscillates” with the height. However, the plate can 
only shift the first resonant frequency of the dipole at the low 
side to around 4.69 GHz which still does not come close to the 
observed 4.098 GHz in the box resonant frequencies. 

In a second step, one more plate was added to the model. 
Again, for simplification, only the configuration of the case of 
two parallel plates with a parallel dipole at the center is shown 
in Fig. 10. The same simulations as in the previous one-plate 
case were repeated and the results are shown in Fig. 11 
(including the perpendicular case). It is worth noting that in 
the two parallel plates case, “distance” starts from 2 mm while 
in the two perpendicular plates case, “distance” begins from 
32 mm. The reason is that in the perpendicular case, the dipole 
length (30 mm) should be added to the distance between the 
two plates. From Fig. 11, it can be clearly seen that the overall 
trend of the first frequency of the dipole is not as smooth as in 
the previous case, but it can reach to a larger “oscillation” 
range and cover the targeted 4.098 GHz (Fig. 11(a)). 
Specifically, when the height of the dipole above the plate is 
17 mm (or the distance between two plates is 34mm, marked 
in red, corresponding to the sf = 1 case in which dipole is 
placed at the center of the original box), the first resonant 
frequency of the dipole is around 4.15 GHz which is already 

close to the observed 4.098 GHz. Therefore, it can be 
speculated that the shift of the first resonant frequency of the 
dipole is a result of the influence of the metallic plates. The 
detailed theoretical explanation (including mathematical 
calculations) and validation work with multiple plates will be 
performed in the future work. 

To explain Q2, again the corresponding E-field pattern 
was checked. Due to the boundary conditions [15], an EM 
resonance can only exist when it has at least two components 
of Ex, Ey, Ez (here only the electric field was considered for 
simplification). From Fig. 5(b), it can be seen that this 4.47 
GHz resonance has Ex and Ez components, which satisfies the 
above principle. However, when one dipole along x-axis was 
added, this resonance disappeared. Therefore, it can be 
deduced that this dipole along x-axis broke the boundary 
conditions of the resonance at 4.47 GHz and made this 
resonance disappear. Then this assumption was verified by 
changing the orientation of dipole, which is shown in Fig. 12. 
Instead of along x-axis, the dipole was rotated 90 degrees 
clockwise in the XY-plane to along y-axis. Based on this new 
case, it was expected to see the resonance at 4.47 GHz would 

 

Fig. 10. Case of one dipole with two plates. 

 
(a) 

 
(b) 

Fig. 11. First resonant frequency versus height in two plates case. (a) Parallel 

dipole. (b) Perpendicular dipole.  

 

 

Fig. 12. Closed metallic box with one dipole along y-axis. 

 
(a)                                  (b)                                   (c) 

Fig. 13. Closed metallic box with one dipole along y-axis. (a) Empty box. 

(b) Box with dipole (along x-axis) (c) Box with dipole (along y-axis). 

 



show up again and another resonance which has only Ey and 
Ez components will disappear. With other conditions and 
parameters keeping constant, this new case was simulated.  
From the results in Fig. 13, it can be clearly found that the 4.47 
GHz resonance appeared again and another resonance (4.467 
GHz) disappeared. By checking the field pattern of this newly 
disappeared 4.467 GHz resonance (Fig. 14), it was found that 
this resonance has exact only Ey and Ez components, which 
confirms our assumption. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we investigated the influence of the 
interaction between a dipole and a fully closed metallic box 
on the dipole’s first resonant frequency. After the study of the 
separate resonances of both dipole and box resonances, the 
resonances of the overall combined system have been studied. 
With the help of a full wave time-domain and eigenmode 
solvers, it is observed that the resonant frequencies of the 
combined structure are not a simple combination of those of 
all the separate components. Instead, the combination of all 
the components can mutually affect the resonant frequencies 
of separate components by either shifting-, coinciding with-, 
or removing them. As demonstrated in the paper, shifting or 
coinciding with the existing resonant frequencies is due to the 
influence of the surrounding box/plates, while the 
disappearance of existing resonant frequencies is due to 
breaking their corresponding boundary conditions. 

So, in order to better manage risks in electronic systems 
with the risk-based approach, the mutual influences between 
the metallic enclosure and its internal components, as shown 
in this paper, should be quantified and taken into account in 
the risk analysis stage and, if necessary, appropriate mitigation 
measures should be defined. 

Our future work will mainly contain the following aspects: 
first of all, the theoretical explanation of the influence of the 
plates on the dipole resonant frequencies will be studied and 
developed. Also, a complete mechanism of the interactions 
between the metallic enclosure and internal components, as 
well as between internal components themselves, will be 
explored, including the theoretical explanation and related 
validation work. By doing this, more practical solutions for 
managing the risks caused by such mutual influences can be 
proposed. 
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Fig. 14. E-field pattern of 4.467 GHz. 

 


