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Abstract—The conceptual design of an EMI detector based
on a pair of transmission lines sending inverted data has
been presented previously. This paper focuses on the actual
hardware design of such an EMI detector. The prototype of the
EMI detector is implemented using both analogue and digital
hardware designs. In the analogue design, the EMI detector
detects the presence by processing the signal at the receiver
end directly using analogue electronic components. In the digital
design, the EMI detector uses an analogue to digital converter
(ADC) to convert the voltage signal from the receiver end into
its digital form. This voltage is further processed using a Field
Programmable Gate Array (FPGA), which generates a warning
when EMI is present. This paper compares the operation and
performance of both designs of the EMI detector in a harsh
electromagnetic (EM) environment.

Index Terms—EMI, EMC, Functional Safety,
Risk Management, Detection

I. INTRODUCTION

The advent of autonomous systems, Industry 4.0 and the
Internet of Things (IoTs) have significantly increased the
demand for sophisticated and dependable electronic systems
in recent years. More and more mission- and safety-critical
devices are used in our daily lives. At the same time,
due to the growing usage of wireless communication and
high-power switching devices, the electromagnetic (EM)
environment is getting harsher and more polluted every
day. EM disturbances can interfere with electronic data,
affect performance, and in extreme cases, cause fatal errors.
Because of the above, the combination of the disciplines of
electromagnetic compatibility (EMC) engineering and system
safety engineering are gaining huge importance.

The recently published standard IEEE 1848, focuses on
techniques and measures (T&Ms) to enhance the safety of
a system by properly managing functional safety and other
risks regarding EM disturbances [1]. These T&Ms aim to
prevent errors, malfunctions or failures in signal, data and
power supplies. The main goal of these T&Ms is to minimize
the actual impact of EM disturbances. In the presence of EM
disturbances, the system should preferably keep working as
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foreseen, or if that is deemed to be not sufficiently safe,
continue with limited performance or, in the extreme case,
shut down temporarily to avoid fatal errors (safe-state).

The actual implementation of communication channels
plays a vital role in the safe transmission of data. EM
disturbances in a wired communication channel are one of
the major concerns for functional safety engineers. The EM
disturbance can affect the communication channel, leading to
the corruption of transmitted data. Therefore, many software
and hardware-based T&Ms are designed for dealing with
possible interference on the data in a communication channel
[2]. Software-based techniques include Error Correction Codes
(ECC) and Error Detection Codes (EDCs), which aim to
detect and correct data affected by EM disturbances [3], [4].
Hardware-based techniques focus on diversity redundancy, for
example, by spatial [5], frequency [6], and time diversity [7].
Unfortunately, the available T&Ms are not able to ensure
correct transmission of data or detect corrupt data in the
presence of EMI in all cases.

As an additional T&M, an on-board EMI detector based
on a pair of transmission lines sending inverted data has
been proposed in [8], [9]. The EMI detector generates a
warning when it detects EMI disturbances in the data on
the transmission lines. This warning can help the system
to follow a precautionary procedure by retransmitting the
data or, in the extreme case, by shifting the system to
reduced performance or a safe-state. The EMI detector was
tested by software-based simulations using continuous-wave
disturbances and a Monte-Carlo based simulation-framework
[8], [9]. The continuous wave simulations use a sinusoidal
EMD induced voltage as an EM disturbance to analyze
the performance of the EMI detector. In these simulations,
amplitude, frequency, incoming phase, and phase difference
between data transmission lines of EMD induced voltage is
varied for the analysis. The Monte-Carlo based simulation
framework uses an EM wave in a simulated reverberation
room like environment. Therefore, the induced voltage in the
Monte-Carlo based simulation framework depends upon the
magnitude, direction, and polarization of the incident plane
waves. The EMI detector was able to detect EMI induced bit
errors in most cases except when the EMD frequency is a
multiple of the sampling rate [8].



In this paper, analogue and digital hardware designs of
the EMI detector are presented with the aim to practically
and physically analyze their performance. In the analogue
design, the EMI detector processes the signal received from
the data transmission lines directly using analogue electronic
components. In the digital design, the voltage in both data
transmission lines is converted to digital signals using an
ADC. These digital signals are further processed using a Field
Programmable Gate Array (FPGA). In both designs, the EMI
detector aims to generate a warning when EMD is interfering
with the data.

The remainder of this paper is organized as follows: Section
II discusses the theoretical work behind the hardware design of
the EMI detector. Section II-A describes the analogue design
of the EMI detector. Section II-B elaborates the details of the
digital design of the EMI Detector. Section III evaluates the
design of the EMI detector. Section IV deduces the results
from the analysis. Lastly, Section V provides concluding
remarks.

II. HARDWARE DESIGN

In the development of the hardware design of the EMI
detector, differential data transmission lines are used. The
designed EMI detector receives a signal from the receiver end
of both data transmission lines to detect EMI disturbances.
This signal is processed by performing the analytical
operations as proposed in [8], [9], including the addition and
subtraction of the received signal. The aim of these operations
is to analyze the EMI-induced voltage correctly. The EMI
detector generates a warning when the induced voltage is
higher than the predetermined threshold voltage. Fig. 1 shows
the block diagram of the designed EMI detector. For more
details about the theoretical concepts behind the EMI detector,
the reader is referred to [8].
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Fig. 1. EMI Detector Block Diagram

A. Analogue Design

In the analogue design of the EMI detector, the EMI detector
processes the signals directly using analogue electronic
components. The theoretical results in [8], [9] show that the
EMI detector may not detect bit errors when the frequency
ratio is an integer multiple of the sampling rate. The frequency
ratio is defined as the ratio of the EMI frequency to the
bit frequency. The design of the EMI detector focuses
on a bit frequency of 100MHz. In order to verify the
shortcomings identified in the theoretical design, all electronic

components selected for the EMI detector work for at least
a frequency of 300MHz, i.e. three times the selected bit
frequency. The analogue design uses an OPA 699ID for
all operational amplifiers. The OPA 699ID is a wideband,
high-frequency amplifier with a gain-bandwidth product of
1GHz. In this design, the data transmission lines use Low
Voltage Differential Signalling 2.5V (LVDS2.5). LVDS2.5
uses a 2.5V supply and 1.25V common-mode. To differentiate
the logic ”high” and ”low” of the transmitted data, LVDS2.5
needs at least a differential swing of 350mV. The important
components of the EMI detector are implemented as follows.

1) Adder: The adder adds up the voltages received from
both data transmission lines. The adder is implemented by
using non-inverting operational amplifiers. The addition of
the voltages from both data transmission lines leads in ideal
situations to a constant DC output voltage. This constant
voltage is removed afterwards by a DC blocker based on a
differential amplifier. This differential amplifier is fed by an
external voltage supply.

2) Subtractor: The subtractor subtracts the voltages
received from both data transmission lines. It is implemented
by using a simple differential amplifier. The gain of the
amplifier is more than one to amplify the difference of EMD
induced voltage between data transmission lines. Therefore,
the subtractor both subtracts and amplifies the voltage.

3) Rectifier: In order to rectify the signal, a full-wave
rectifier is designed. There are two options for building
a rectifier: by using diodes or MOSFETs. The voltage
drop of diodes can diminish the induced voltage, whereas,
high-frequency MOSFETs with lower threshold voltage
are not commercially available discretely. Due to this, a
diode-based rectifier followed by an operational amplifier is
used. The operational amplifier reduces the impact of the
voltage drop over the diodes and allows the EMI detector to
analyze EMI disturbances with adequate sensitivity.

4) Voltage Buffer: Voltage buffers are commonly used to
increase the input impedance. These ensure that there is no
voltage drop by subsequent components. The voltage buffer is
based on a simple operational amplifier.

5) Comparator: The comparator is a crucial component
of the EMI detector, as it generates a warning if the
EMI induced voltage is higher than the threshold voltage.
Prior to this last step, the EMI detector performs separate
addition and subtraction of the signal received from the data
transmission lines followed by rectification and the removal
of the DC component. Signals from the adder and subtractor
are separately fed to two comparators. The comparator is also
designed using OPA699ID. The value of the threshold voltage
of comparators can be set using an external voltage supply.

B. Digital Design

In the digital design of the EMI detector, an ADC converts
the received voltage from the data transmission lines to digital
signals. An FPGA is used to process the signal and generate
a warning. In addition, the digital design helps to analyse
signals at each step and determine the impact of each block on



the performance of the EMI detector. Fig. 2 shows the block
diagram of the digital design of the EMI detector. The main
components of the digital design are as follows.
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Fig. 2. Block Diagram of Digital Design of the EMI Detector

1) FPGA: The FPGA is the main processing unit in the
digital design of the EMI detector. The main job of the FPGA
is to transmit and receive data and also to perform signal
processing, including addition, subtraction, rectification, and
removal of the DC voltage. The FPGA transmits and receives
data in a binary form. It generates a warning and records
the data that can be used for further analysis. The FPGA
also ensures retransmission of data in case of a warning. In
this design, a Spartan-6, XC6SLX4(Xilinx) was used, with a
TQFP144 package for the ease of soldering.

2) Analogue to Digital Converter (ADC): The digital
design of the EMI detector uses a MAX105ECS ADC
to convert the received analogue voltage to a binary
representation of the voltages. The MAX105ECS is a 6-bit
dual-channel, fully-differential ADC with 800 mega-samples
per second (MSPS) sampling rate and +5V/-5V power
supplies. Unfortunately, this ADC can only work within
limited differential and common-mode input voltage ranges.
This ADC can detect a differential voltage swing of 400mV
from 1V to 1.4V. The received voltage from the data
transmission lines is shifted to the receivable voltage range of
the ADC. This is done by a set of operational amplifiers which
attenuate and shift the voltage. Instrumentation amplifiers with
high input resistance are used to feed the ADC. A high input
impedance will ensure there is no voltage drop because of
external connections of the EMI detector. Overall, the above
settings ensure that the ADC can work effectively for EMI
induced voltages from -5V to +5V.

3) Voltage Sources: There are four voltage sources for
different components present in the digital design of the EMI
detector. The primary USB connection supplies 5V input
voltage, which is further converted according to the particular
requirements. Linear and switch-mode regulators are used to
generate the required voltages. In the design, voltage supplies
of 1.2V, 2.5V, 3.3V, 5V and -5V are used.

4) Programmable Read-Only Memory (PROM): The job of
the PROM is to save and provide the configurations for the
FPGA. It can be programmed by using a JTAG connection.
In this design, the XCF04 PROM model is used, it contains
4MB of memory.

III. OVERVIEW OF DESIGNS

The schematics and PCB designs of the EMI detector are
described in this section. Fig. 3 shows the analogue design of
the EMI detector. The module on top of the schematics shows
an adder followed by a DC blocker and rectifier. The module
in the middle shows the subtractor followed by a rectifier, DC
blocker and another rectifier. The comparator is used at the end
of the EMI detector to generate a warning if the EMI induced
voltage is higher than the threshold voltage. The module at the
bottom shows the decoupling capacitance of the EMI detector.
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Fig. 3. Analogue EMI Detector Schematic

The schematics of the digital design of the EMI detector is
shown in Fig. 4. In the schematics, the FPGA is present at the
rightmost corner. Voltage regulators are arranged on the top
left side of the schematic, and capacitors at the bottom left.
Operational amplifiers to convert the voltage to the required
range of ADC are shown on the top. The ADC, PROM, clock
and set up for the USB connection are shown in the middle
of the schematic design.
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Fig. 4. Digital EMI Detector Schematic

The PCB of the analogue design consists of four layers:
layer 1 for signal traces and components, layer 3 for power
traces, and layers 2 and 4 for ground planes. The voltage
sources and data transmission lines are externally connected
with the PCB design using SMA connectors. Fig. 5 shows the
PCB design of the analogue design of the EMI detector.



Fig. 5. PCB Layout of the Analogue EMI Detector

The digital design of the EMI detector contains all
components, voltage sources, data transmission lines needed
for the operation of the EMI detector on a single PCB. The
PCB design consists of six layers: layers 1 and 3 for signal
traces, layer 2 and 4 for ground layers, layer 5 for power
traces, and layer 6 for data transmission lines. This PCB is
compliant with the IEC 61967-2 and IEC 62132-2 standards.
The PCB layout of the digital design of the EMI detector is
shown in Fig. 6.

Fig. 6. PCB Layout of Digital EMI Detector

The PCB design of the analogue EMI detector has been
fabricated and is shown in Fig. 7. Unfortunately, because of
COVID related delays, a few components of the digital design
were not delivered on time, so this paper does not include the
fabrication and analysis of the digital design.

Fig. 7. Fabricated PCB design of the Analogue EMI Detector

IV. RESULTS

Fig. 8 shows an overview of the measurement setup. The
Spartan-6 LX45 FPGA is used for transmitting and receiving
data at 10MHz. The FPGA also receives the warnings
generated by the EMI detector. The system perspective
definitions for the EMI detector given in [10] are used for
analyzing the performance of the EMI detector. The FPGA
calculates the following

• Bit Errors (BERs): These occur when the received bit is
not the same as the transmitted one.

• Data True Positives (DTPs) and Channel True Positives
(CTPs): DTPs refer to cases where EMD is not strong
enough to disturb the transmitted signal, and the EMI
detector is not generating warnings. CTPs refer to
cases where EMI can disturb the transmitted data, but
fortunately, the received data is correct, and no warnings
are generated.

• Data False Positives (DFPs) and Channel False Positives
(CFPs): DFPs refer to cases where EMI is detected even
though data is correct, and EMI is not strong enough to
disturb the transmitted data. CFPs refer to detection by
the EMI detector when EMI is strong enough to disturb
the data, but fortunately, the received data is correct.

• Channel True Negatives (CTNs): They appear when the
EMI detector correctly detects EMI in the transmitted
signal.

• Channel False Negatives (CFNs): These are the cases
when the received data is incorrect, but the EMI detector
does not generate a warning.

A shielded room is used to evaluate the performance of
the analogue EMI detector, as shown in Fig. 9. The EMD
is generated using a log-periodic antenna with a specified
frequency range from 30MHz to 1GHz. To make the data
transmission lines more vulnerable to EMI, a PCB with a
cut in the ground plane is used, as shown in Fig. 10. The
receiver side of the data transmission lines is connected to the



Fig. 8. An Overview of the Measurement Setup

analogue EMI detector and the FPGA, both placed outside of
the reverberation room.

Fig. 9. Analysis Setup for evaluation of the EMI Detector

Fig. 10. The PCB Design of data transmission lines

The generator RF power is increased from -10dBm to
5dBm with a step size of 0.1dBm. An amplifier of 35dB
is used to amplify the signal. The bit errors in the data
transmission lines depend upon both the voltage used for the
data transmission and the voltage induced by EMD. Therefore,
The EMI detector’s response is analyzed by using a Signal to
Interference ratio (SIR). The SIR is defined by equation (1).

SIR = 20 · log10

(
V RMS

Sig

V RMS
EMI

)
. (1)

The response of the analogue EMI detector for EMD at a
frequency of 305MHz is shown in Fig. 11. It can be observed
that the EMI detector starts generating warnings at the SIR
level of 22dB, and it generates warnings for all transmitted
bits for SIR below 20.5dB. CTN’s are present generated by
the EMI detector at SIRs below 15.36dB

Fig. 11. Response of the Analogue EMI detector at bit frequency=10MHz
and EMI frequency=305MHz

In Fig.12, the RF signal is applied with a frequency
of 326MHz. It can be observed that the EMI detector is
generating warnings below 22.49dB. DFPs and CFPs increase
to a hundred percent at 19.45dB, and CTNs start occurring
from 14.835dB.

Fig. 12. Response of the Analogue EMI detector at bit frequency=10MHz
and EMI frequency=326MHz

The results show that the EMI detector does not generate
a warning when SIR is high, and the FGPA receives the data
correctly, i.e. DTPs and CTPs. As the SIR decreases, the EMI
detector starts generating a warning even when the received
data is correct, i.e. DFPs and CFPs. In cases where the SIR
power is very high the EMI detector correctly detects BERs,
i.e. CTNs. In the performed experiments, there were no cases
where the EMI detector was not able to detect BERs, i.e.
CFNs. This may be due to the fact that tested frequencies
were not a multiple of sampling rate where the theoretical
design of the EMI detector was not able to detect. This was not
performed due to lower coupling at these frequencies. Results



also show that the EMI Detector starts generating warnings
for higher SIR than previous simulations. This is due to the
different threshold voltage and voltage levels used for the data
transmission in the measurements.

V. CONCLUSION

The hardware design of the EMI detector is proposed
in a digital and analogue form. This paper provides an
overview of their designs and analyzes the performance of
the analogue EMI detector. The analogue design is tested in a
harsh EM environment by varying RF power and frequency.
The results show that the EMI detector correctly identifies
cases where EMD is interfering with the transmitted data
in a wired communication channel. However, warnings are
also generated for cases where EMD induced voltage does
not cause bit errors, compromising the availability. Future
work should focus on testing the analogue EMI detector at
multiple frequencies in real EM environments. In addition,
future research should focus on a design to reduce DFP of
the analogue EMI detector. An analysis is also needed for the
digital design of the EMI detector.
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