
Citation: Nikseresht, M.;

Vankeirsbilck, J.; Boydens, J. A Study

on Selective Implementation

Approaches for Soft Error Detection

Using S-SWIFT-R. Electronics 2022, 11,

3380. https://doi.org/10.3390/

electronics11203380

Academic Editors: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 23 August 2022

Accepted: 14 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Study on Selective Implementation Approaches for Soft Error
Detection Using S-SWIFT-R
Mohaddaseh Nikseresht * , Jens Vankeirsbilck * and Jeroen Boydens *

Department of Computer Science, KU Leuven, Spoorwegstraat 12, 8200 Bruges, Belgium
* mohaddaseh.nikseresht@kuleuven.be (M.N.); jens.vankeirsbilck@kuleuven.be (J.V.);

jeroen.boydens@kuleuven.be (J.B.)

Abstract: This article analyzes diverse criteria for effectively implementing selective hardening
against soft errors through software-based strategies. The goal is to obtain maximum fault coverage
with the least amount of overhead for each specific application. To achieve this objective, the analysis
is conducted based on two important phases, pre-selection and selective hardening of registers.
In the pre-selection phase, the impact of the two most used selection metrics has been examined:
(1) selecting registers based on their memory interaction vs. (2) selecting registers depending on fault
injection vulnerability. Toward the selective hardening phase, the impact of gradually increasing the
number of registers to protect is examined. Experiments have been conducted on 8 academic case
studies and 1 industrial case study. Faults have been injected into the case studies using our in-house
fault injector. The results indicate that selecting registers based on the fault injected into the system
has an overall 10% better performance in comparison to selecting registers based on the memory
interaction in 6 out of 8 academic case studies and also the industrial case study. Additionally, there
is a significant improvement in reliability when increasing the number of registers to protect at the
expense of rising overhead. In this work, these comparisons and analyses are presented.

Keywords: fault tolerance; reliability; embedded systems; soft errors; single event upset (SEU);
selective implementation

1. Introduction

An embedded system is a combination of computer hardware and software that is
intended to perform a particular function inside a larger system [1]. A wide range of em-
bedded systems can be found in different applications, from digital watches and cameras
to medical systems, autonomous systems, and avionics [2]. Microprocessors are the heart
of embedded systems. Over the last few decades, there have been significant scientific
advancements in the creation of microprocessors. Some of these advancements include
a huge boost in their performance, as well as an ever increasing integration density. Most
of these improvements are thanks to advancements toward microtechnology; electronic
components have become smaller, which has made it feasible to achieve these significant
outcomes. However, as a result of these modifications, transistor sizes are diminishing,
and voltage source levels and noise margins have also been reduced [3]. The result is that
electronic devices became less reliable, and thus microprocessors became more suscep-
tible to various types of faults, particularly those caused by radiation [4]. This matters
since, in mission-critical systems, radiation impact on electronic components could have
devastating repercussions.

These negative impacts are caused by high-energy particles influencing electronic
components, which may result in the ionization of their internal silicon structures, either
directly or indirectly. These incidents might have a long-term effect on the functioning of the
component (permanent faults) or just have a short-term effect (transient faults). In contrast
to permanent faults, transient faults may cause the system’s behavior to change briefly

Electronics 2022, 11, 3380. https://doi.org/10.3390/electronics11203380 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203380
https://doi.org/10.3390/electronics11203380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3558-0303
https://orcid.org/0000-0003-0038-588X
https://orcid.org/0000-0002-7902-8537
https://doi.org/10.3390/electronics11203380
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203380?type=check_update&version=1

Electronics 2022, 11, 3380 2 of 22

by interfering with signal transfers or storing data in memory. Among transient faults,
Single Event Upset (SEU), which is defined as a change in the logic state of a single memory
element, could cause the most damage to the system [5]. SEUs have traditionally been seen
as a source of concern for space application systems, owing to the fact that they occur more
often in outer space than on earth. However, in recent decades, the scope of this challenge
has been broadened to include electrical circuits that must operate in the atmosphere,
and even at the surface of the earth, consequently, their safety and dependability are
seriously compromised [6].

From another aspect, the usage of commercial off-the-shelf (COTS) processors in
mission-critical embedded systems, add a challenge to embedded systems’ dependability
as well. Due to their programmability, performance, and cost-effectiveness, COTS electronic
components offer important capabilities and advantages in the development of low-cost
safety-critical systems. However, COTS components were designed with general-purpose
applications in mind, not mission-critical applications. Thereby, they have a high vulner-
ability to radiation-induced impacts, such as SEU, which make the system’s reliability
more difficult [7]. As a consequence of these two significant obstacles, more and more
applications are realizing the need for hardening embedded systems against SEU’s faults.
Additionally, COTS components restrict the implementation of hardware-based mech-
anisms directly inside the CPUs, therefore, alternative software redundancy technique
approaches must be adopted.

To address these obstacles, recently several publications have advocated the selective
hardening of software-based systems in order to decrease software overheads while also
providing more flexibility to designers. This involves protecting just certain parts of the
application or the CPU’s architectural resources while using duplicate software. These
protected components may be chosen, among other factors, depending on their vulnera-
bility or their contribution to overheads. It is essential to prioritize the protection of the
most susceptible resources while avoiding significant system impacts, such as an increase
in memory overhead or a performance loss.

In this paper, which is primarily focused on transient faults, the goal is to examine
different techniques for identifying desired (vulnerable) registers in a program. To
determine which registers to protect, two well-known methodologies are chosen to conduct
research. One is focused on selecting registers based on their number of accesses to the
memory [8]; the other is selecting registers based on their vulnerability to faults. We have
compared the efficacy of these two strategies. Later, the desired registers are protected
using a selective software-implemented fault tolerance recovery technique known as S-
SWIFT-R. This technique is a well-known selective hardening technique [9]. This protection
method has been used since it is a well-known method suitable for low-cost, dependable
applications using commercial off-the-shelf microprocessors. However, the impact of
increasing the number of registers to protect and its direct influence on the system’s
overhead has not been studied yet. In this work, we analyzed the trade-off between the
number of registers to protect, i.e., the increase in reliability, and the imposed overhead
using S-SWIFT-R.

This paper is structured as follows: the background is detailed in the next section.
Section 3 describes the rationale and implementation of the pre-selection approaches for
selecting the desired registers. Following the application of S-SWIFT-R, our selective
register hardening technology, for hardening the desired registers. Section 4 describes
our algorithm and methodology for applying S-SWIFT-R to software automatically. The
experimental findings are described and debated in Section 5. Finally, Sections 6 and 7
conclude with suggestions for further studies and closing views.

2. Background

Traditionally, hardware redundancy has been the most frequent method for addressing
reliability problems in the design of digital circuits. This encompasses an extensive array of
solutions based on Error Detection and Correction Codes (EDACs) [10], gate-level logic

Electronics 2022, 11, 3380 3 of 22

redundancy [11], and architectural level protection [3]. However, due to the expansion
of processor-based systems and the need for reliable low-cost solutions, a wide variety
of software techniques have evolved over time, and a new generation of approaches
based on software redundant have arisen during the past few decades. In this regard,
the first generation of software protection techniques known as Software Implemented
Hardware Fault Tolerance (SIHFT) have been introduced [12]. SIHFT techniques address
how to deal with faults affecting the hardware by acting on the software level. The SIHFT
techniques try to identify faults toward instruction redundancy at a low level (assembly
code). These techniques are categorized depending on the kind of fault that they attempt
to detect/correct divided into two families:

• Control flow execution faults (also referred to as signature verification techniques)
cause a jump in the execution order of the program, resulting in a system hang or
crash [7]. The most common members of this family are the Control Flow Checking
technique by Software Signatures (CFCSS) [8], and RASM [10]. In [10], the authors
compared seven signature monitoring techniques and developed the new RASM
technique based on their findings, which outperforms the studied techniques.

• Program data faults could corrupt data values in the program resulting in an incorrect
intermediate value and consequently final output [8]. This family is mostly based
on the N-versions programming methodology [11], which may be implemented at
many granularity levels: program [10,11,13], procedure [12], and, most often, instruc-
tion [14–16]. The emphasis of this article is on program data faults. Several strategies
have been used to prevent data flow faults. Some examples of these techniques: error
detection by diverse data and duplicated instructions (ED4 I) [17], are error detec-
tion by duplicated instructions (EDDI) [17], and soft error detection using software
redundancy (SEDSR) [18]. In CDFEDT [19], the author compares and reviews seven
leading-edge approaches using various case examples and criteria.

The drawback of the majority of SIHFT approaches is that as detection rates grow, so do
code size and execution time overhead. As a result, to fully protect the software a significant
overhead is exposed to the system [16,18,20]. In conclusion, while SIHFT techniques
may be a feasible protection solution for low-cost COTS-based systems, they provide
a large number of design challenges, such as substantial memory costs or unreasonable
performance penalties. Moreover, if these systems are also intended to enable the system’s
recovery, the code size and execution time overhead grow even further [17,18,21,22].

These limitations, the desire to overcome them, and the need for them in the industry
gave rise to selective software protection approaches. This involves protecting just the
sections of the code that are most vulnerable to the fault instead of the whole program to
reduce the code size and execution time overhead. This concept is known as selective hard-
ening. The main advantage offered by selective hardening-based techniques is flexibility.
Designers have access to a range of options, enabling them to exhaustively explore the
design space provided by software techniques, taking into account factors, such as code
size overhead, performance degradation, and reliability level. For example, if a certain
set of hardening methods is inconvenient according to the application’s needs (e.g., if the
maximum execution time is exceeded), the approach can be applied selectively based on
the important program resources or parts. In this context, we have used the S-SWIFT-R
selective hardening technique. The reason for choosing this technique is that the majority of
selective techniques are used alongside hardware resilience techniques. S-SWIFT-R, on the
other hand, is capable of selective software-only fault recovery strategies. As a result, we
could study the effect of the selective hardening process in isolation. In the next section,
the pre-selection approaches for picking registers and the steps implementing S-SWIFT-R,
our selective hardening technique are described.

3. Materials and Methods

The following steps must be completed in order to examine the impact of different
approaches to selecting desired registers, as well as the effects of increasing the number of

Electronics 2022, 11, 3380 4 of 22

registers to hardening the program. In the first step, it is necessary to specify the approaches
for picking the registers and design a practical implementation known as pre-selection
techniques. The second phase explains the S-SWIFT-R technique and the mechanism for
hardening the desired registers inside the program. Additionally, the abstract pictorial
representation of methodology has been shown in Figure 1.

Step 1:Identifying
desirable registers

Step 2: Selective hardening
technique

Selecting the registers based
on their vulnerability to the
fault injected to the system

 Selecting the registers
based on their interaction

with the memory

Figure 1. The abstract pictorial representation of the methodology.

3.1. Step 1: Identifying Desirable Registers

In the initial phase of implementation, the registers sensitive to transient faults must
be specified. Pre-selecting is the important phase since it avoids exploring all the possible
combinations in the design space and only hardening the registers that have the most
impact on the reliability of the system. When S-SWIFT-R is applied to the desired registers,
the overheads are predicted to grow significantly if the register is frequently accessed, since
this protection entails the usage of a greater number of duplicated instructions. Protecting
these registers does not ensure increased dependability since the vulnerability of each
register is determined by the criticality of the functions for which the register is utilized,
which is not necessarily associated with the number of times the register is visited. There
are different metrics for the efficient implementation of selective hardening using software-
based techniques. To be able to compare these techniques and their impact on each other we
have chosen the two well-known ones among these techniques. One is selecting registers
based on their interaction with the memory. Whenever we are talking about using the
S-SWIFT-R technique based on memory interaction initialization throughout the paper
would be indicated in the short term as S-SWIFT-R-M. In a similar way, whenever we
are talking about using the S-SWIFT-R technique based on the fault injected initialization
throughout the paper it would be indicated in the short term as S-SWIFT-R-F. When these
techniques are applied to the program each register will be given a value. These values are
given ranks in decreasing order, which indicates that the registers at the top of the list are
likewise the most essential and first candidates to be hardened. To give an example, Table 1
presents the results of the DIJ case study in both pre-selecting strategies. The registers will
then be chosen for hardening in the order indicated by their rank.

Electronics 2022, 11, 3380 5 of 22

Table 1. Register usage report of DIJ case study.

S-SWIFT-R-M Score S-SWIFT-R-F Score

R3 130,056 R0 2048
R2 64,874 R2 1824
R0 66 R1 621
R1 65 R13 512
R7 12 R4 490
R4 9 R10 312

R13 3 R3 256
R8 0 R8 218
R9 0 R5 192

R11 0 R7 148
R12 0 R5 123
R10 0 R4 107
R13 0 R6 101

3.1.1. Selecting the Registers Based on Their Interaction with the Memory

In the work that is proposed in SHARC [23], it is attempted to find the desirable
register that, if hardened, will have the greatest influence on the application’s overall
dependability. The formula shown in Equation (1) is used to investigate the registers. Two
elements are considered for this purpose, the first being the importance of the resources
and the second being the vulnerability overhead (the overhead introduced into the system
as a result of hardening that section). Both factors are formalized in the following definition
by their respective terminology.

SHARC(Rx) =
Σi 6=x ABCi

Σi ABCi
·WABC +

CIRhx
TIRhx

(1)

According to Equation (1), the first component is weighted by WABC and represents
the contribution of unprotected resources to global criticality. Assuming that the hardening
of register x will have a minor impact on other resources, it is calculated as the total of
the individual criticalities and normalized by the initial criticality. The importance of each
individual resource may be summarized as follows: how likely it is that a resource-related
issue may turn into an error during the code execution. By doing a dynamic study of the
program, the WABC measure was utilized to estimate the program’s criticality beforehand.
The evaluation results of different case studies in embedded systems show that the registers
that are in contact with the memory are more vulnerable to a fault in comparison to other
registers. Based on those findings, we developed a framework that dynamically analyzes
a given program and counts how many times each CPU register comes into contact with
memory. In essence, this framework gradually steps through the program and analyzes the
current instruction. In case this is a load or store instruction, i.e., an instruction interacting
with memory, the used registers are discovered and their memory interaction counter is
incremented. At the end of the analysis, a list is returned which contains the number of
memory interactions per CPU register. For more information on this framework, the reader
is referred to [24].

3.1.2. Selecting the Registers Based on Their Vulnerability

To obtain the registers that are more susceptible to faults, we have used the DFE fault
injector tool from our previous work. During the execution of a program, this framework
will inject hardware faults. Later, the program will be evaluated, and a register priority list
will be constructed based on the number of faults inserted into each register that is able to
corrupt the program output.

This process begins with an initialization step that initializes variables and generates
all potential DFEs. The user-defined parameters disasmFile and range are used to generate

Electronics 2022, 11, 3380 6 of 22

these potential DFEs. The disasmFile stores the path of the target program’s disassembly
file. This file is required to determine which program counter (PC) values are legitimate.
The range parameter specifies the PC range for which the software will be evaluated.
The option enables testing of a particular function (or functions) as opposed to the complete
program. All conceivable DFEs developed fall within this range. This work is discussed
thoroughly in [25].

3.2. Step 2: Selective Hardening Technique

After picking registers using these two approaches, the second step is to determine
the technique to protect the selected registers. In this study, the fault tolerance technique
must be able to cover just a subset of register elements. We adopt Felipe et al. S-SWIFT-R
method [9]. It uses Triple Modular Redundancy and low-level instruction translation
techniques. It combines two program copies and uses majority voting over susceptible
instructions. It involves duplication of data and instructions and includes data consistency
checks, in the form of a majority vote. Every protected register needs 2 shadow registers,
a shadow register is a reserved register in which the only function is to keep track of
all the changes made to the original register inside the program and to ensure that the
original register’s value is valid. The total number of registers will be 3 × n. Table 2 depicts
the difference between Non-hardened and S-SWIFT-R. In code that is not hardened, no
registers are protected. On the other hand, in the second and third cases, only one register
is protected; hence, this is an accurate portrayal of S-SWIFT-R when just one register
is protected. In each scenario, each register contains two shadow registers. In the next
section, to implement S-SWIFT-R automatically, in contrast to implementing it manually,
is explained.

Table 2. The difference between non-hardened and S-SWIFT-R.

S-SWIFT-R
Non-Hardened Pro.Register: S0 Pro.Register: S1

1 LOAD S0, 00 LOAD S0, 00 LOAD S0, 00
2 create s0 copies
3 LOAD S1, 2A LOAD S1, 2A LOAD S1, 2A
4 create S1 copies
5 majority voter for S1
6 ADD S0, S1 ADD S0, S1 ADD S0, S1
7 ADD S0’, S1
8 ADD S0”, S1
9 majority voter for S0

10 majority voter for S1
11 STORE S0, (S1) STORE S0, (S1) STORE S0, (S1)

4. Automatic Implementation

Software protection techniques, such as S-SWIFT-R, have to be written in low-level
code, such as assembly, which can be difficult and prone to mistakes. To address this issue,
we have used our compiler extension in the form of a plugin that can automatically apply
any supported technique to the target. This GNU Compiler Collection (GCC) compiler
plugin, which is first suggested by Vankeirsbilck et al. [26], is modified so that the S-
SWIFT-R technique is included. GCC converts high-level source code, such as C and C++,
to low-level machine code in three steps: the front-end, the middle-end, and the back-end.
The front-end component handles high-level language, the middle-end component handles
intermediate language, and the back-end component handles system-specific code [27].
Please see our previous works for more information on the GCC plugin [28,29].

Figure 2 depicts the S-SWIFT-R compiler plugin implementation as a UML class
diagram. The classes and methods necessary for S-SWIFT-R are shown in this figure. Upon
the first execution of the plugin, it registers itself as a compilation pass. A pass is a series

Electronics 2022, 11, 3380 7 of 22

of instructions that accomplishes a particular task during the compilation process. In the
next step, for each function, the compiler calls the gate method of the plugin class. Based on
the programmer’s requirements, this method decides whether or not the supplied function
should be protected by an error detection approach. The execute method is invoked if
the gate method returns true. It will assess the plugin-specific compiler options, launch
DFED Creator, and execute the implTech function from DFED Creator. This methodology
is better known as the Factory Design pattern [30]. It is aware of the instruction sets the
plugin supports and how the soft error detection techniques should be implemented. First,
the employed instruction set is recognized. Then, the DFED Creator object instantiates
the class of the given method (S-SWIFT-R in Figure 2). All classes using DFED techniques
derive from the abstract GeneralDFED class and are implemented through its implement()
method. This method calls the insertError(), insertSetup() and implementDupComp() methods.
The insertError() method inserts a call to the DFED error handler at the conclusion of the
evaluated function and puts a label at the insertion point. When an error is discovered,
the plugin may subsequently utilize this label to branch to this call. insertSetup() and
ImplementDupComp() are abstract functions implemented in the S-SWIFT-R classes described
in the next section. This method guarantees that the algorithm’s structure stays constant,
while subclasses incorporate technique-specific phases.

Abstract
GeneralDFED

Abstract
GeneralDFED

pluginplugin DFED CreatorDFED Creator

S-SWIFT-RS-SWIFT-R

+implement()

-insertSetup()
-implementDupComp()

+gate(fun: function): bool
+execute(fun:function)

+implTech(technique: string)

-insertSetup()
-implementDupComp()

Figure 2. UML class diagram of the S-SWIFT-R compiler plugin.

The S-SWIFT-R GCC Plugin Implementation

As stated in the previous section, the insertSetup() method of S-SWIFT-R will be
invoked first. The method will inject shadow register initialization instructions. Using a
register map, shadow registers are mapped to the protected registers.

Then, the implementDupComp method is called. The implementation of this approach
is shown in Algorithm 1. It begins by evaluating all of the instructions in the function and
duplicating those that should be replicated (lines 3 and 4). This means duplicating the
instruction twice, replacing the utilized registers with their equivalent shadow registers,
and inserting the duplicate after the original instruction. Any instruction in S-SWIFT-R
that affects the value of the intended register should be duplicated. As a result, compare
instructions and control flow instructions, such as branch instructions, are not repeated.
Store, push, and pop instructions are exceptions because repeated instructions may push or
pop the erroneous value onto or off the stack. However, when pop instructions change the
value of a register, the accompanying shadow registers must also be changed (lines 5 and
6). Furthermore, pop instructions will change the stack pointer. As a result, the shadow reg-
isters of this stack reference should be updated after each pop instruction. Push commands
follow a similar logic (lines 7 and 8).

Now that the instructions have been replicated, the accuracy of the computations
may be checked by comparing the original registers to the shadow registers at various
synchronization points in the program code. Whenever the value of the original register
is required during the program execution, the two shadow registers are compared. If
they match, they must be accurate, thus they are copied back to the original register to

Electronics 2022, 11, 3380 8 of 22

remedy any potential corruption. If they do not match, the value of the original register is
transferred to both shadow registers (from lines 9 to 15). This will allow the S-SWIFT-R to
recover from a single event upset. One last point to consider while implementing S-SWIFT-
R is call handling. When a function call happens, program control is passed to a subroutine
that may or may not be protected by the error detection approach. This implies that when
the subroutine returns, the actual registers may have changed but the shadow registers may
not have, leading the program to pass control to the DFE error handler improperly at the
next synchronization point. After each function call, all shadow registers are re-initialized.
Due to the fact that a function call is already a synchronization point, this has no significant
impact on the error detection capacity (line 16). The complexity of the algorithm is O(n).
After explaining the methodology and automatic process of implementation, in the next
section, the results have been discussed and explained.

Algorithm 1 implementDupComp function of S-SWIFT-R.

1: for all instr ∈ f unction do
2: if shouldDuplicate(instr) then
3: duplicate(instr)
4: else if isPopInstruction(instr) then
5: updateShadowRegistersA f ter(instr)
6: else if isPushInstruction(instr) then
7: updateShadowSpRegisterA f ter(instr)
8: unsa f eAreas← f indUnsa f eAreas()
9: for all instr ∈ f unction do

10: if shouldCompareBe f ore(instr) then
11: if instr /∈ unsa f eAreas then
12: addCmpBneBe f ore(instr)
13: else
14: addCmpBneBe f ore(unsa f eAreas[instr])
15: initShadowRegsA f terEachFunctionCall()

5. Experimental Validation

To evaluate the two pre-selection methods for picking the registers and analyze the
impact of increasing the number of registers to protect in the selection phase, we employed
fault injection to test the fault tolerance characteristics of techniques. This section starts
by going through the experiment setup and the case studies that are utilized. Following
that, the measured criteria are described. Finally, the experiment’s results are presented
and evaluated.

5.1. Setup for the Experiment

To find the registers toward their interaction with the memory, the mentioned frame-
work was built using the Imperas simulator. The Imperas simulator is an instruction set
simulator that enables the execution of target instructions at the speed of the host. The DFE
fault injector was used to inject faults into the registers, and after evaluating the results,
a priority list ranking the registers from most to least vulnerable was compiled. This list de-
termines which registers will be hardened. After choosing registers using one of these two
approaches, our GCC plugin will add the necessary code to protect the selected registers in
accordance with the S-SWIFT-R standards. After protection codes were included, the case
studies were executed on a simulated ARM Cortex-M3 CPU, a typical 32-bit processor used
in several embedded systems. In the following the list of used academic case studies has
been included. Additionally, Table 3 shows which registers are protected in each case study
for both S-SWIFT-R-F and S-SWIFT-R-M approaches.

• Bit Count (BC): The bit count algorithm, commonly known as the hamming weight,
counts the bits set, or 1’s, in a given data word. This feature is utilized in the commu-

Electronics 2022, 11, 3380 9 of 22

nication domain to compute a parity bit and in the cryptography, area to create keys,
among other applications.

• Bubble Sort (BS)/Quicksort (QS): was chosen because it is employed in a range of
applications, such as setting priorities or aiding quicker data processing.

• Matrix Multiplication (MM): Matrix multiplication was selected because matrices
and matrix multiplication is used in a broad variety of embedded fields, including
image processing (e.g., CAT and MRI scans), robotics, and data compression.

• CRC 32: The primary purpose of the cyclic redundancy check method is to provide
error detection information for data transfers. When utilizing CRC, extra bits are
added to the sent data, allowing for an analysis of whether or not the information
received is accurate.

• Cubic Solver (CU): In physics-related applications, such as the estimation of a vehi-
cle’s speed or the power density of wind turbines, the cubic function solver method
is used.

• Dijkstra’s algorithm (DIJ): Dijkstra’s method determines the shortest route between
two or more nodes, a function that is widely used in routing applications,

• Fast Fourier Transform (FFT): The fast Fourier transform is used in several appli-
cations. including file reduction, speech recognition, and vibro-acoustic analysis
in automobiles.

Table 3. The selected registers to protect for each academic case study.

Case
Study S-SWIFT-R-M S-SWIFT-R-F Case Study S-SWIFT-R-M S-SWIFT-R-F

BC R2 R3 QS R3 R2
R2, R4 R3, R5 R3, R7 R2, R13

R2, R4, R13 R3, R5, R4 R3, R7, R0 R2, R13, R8
R2, R4, R13, R6 R3, R5, R4, R5 R3, R7, R0, R1 R2, R13, R8, R4

BS R2 R4 MM R2 R3
R2, R0 R4, R1 R2, R13 R3, R4

R2, R0, R3 R4, R1, R2 R2, R13, R3 R3, R4, R2
R2, R0, R3, R4 R4, R1, R2, R7 R2, R13, R3, R9 R3, R4, R2, R5

CRC32 R0 R5 CU R3 R4
R0, R8 R5, R13 R3, R13 R4, R8

R0, R8, R2 R5, R13, R4
R0, R8, R2, R13 R1, R13, R4, R5

FFT R2 R6 DIJ R3 R0
R2, R1 R6, R10 R3, R2 R0, R2

5.2. Criteria

In order to compare each approach and its outcomes, we assessed the following
criteria: code size overhead and execution time overhead.

code size relative to unprot. code =
Inst.count.protected

Inst.count.unprotected
(2)

exec. time relative to unprot. code =
exec.time.protected

exec.time.unprotected
(3)

To see the impact of fault coverage offered by S-SWIFT-R, Single Event Upset (SEU),
which is a type of soft error is injected into the system. The injected faults were categorized
based on their impact on the projected system behavior into three categories:

• Hardware Detection (HD): Numerous processors currently have several internal fault
handlers capable of detecting particular hardware errors, such as inappropriate bus
utilization or memory access violations. This category shows the errors that were
noticed by the fault handler.

Electronics 2022, 11, 3380 10 of 22

• Silent Data Corruption (SDC): These are the faults that were not recognized by the
implemented approach and thus led the algorithm to provide an incorrect result.

• No Effect (NE): This is the proportion of faults that were not recognized or have been
recovered by S-SWIFT-R and therefore did not influence the algorithm’s intended output.

5.3. Fault Coverage

To show the influence of hardening on the program, we assessed not just a few
hardened program versions, but all of the versions of both pre-selection techniques. The
overall results of the experiments are shown in Figures 3–10, showing the impact of
hardening one, two, three, and four (full cover) registers. For a detailed look, Appendix A
includes the results for each case study. Note that for three and four registers we have to cut
out FFT, CU, and DIJ case studies. For these case studies, the compiler was unable to create
the programs with the low amount of registers that remained available when reserving the
shadow registers necessary to protect three and four registers.

To initiate the experiment, the non-hardened programs are selected as the baseline
since they reflect the worst-case scenarios. Secondly, the subsequent fault injection for
each case study in both hardened and non-hardened case studies consisted of injecting
80,000 errors. Each error was simulated by flipping a single bit from the microprocessor
register file at a random location. Figures 3–10 illustrate the effects of fault coverage.
It is important to note that even in non-hardened programs the NE category is already
present, showing the inherent resilience to these errors of the case studies. Concerning
the importance of the protection case studies, we are interested in the SDC impact, as it
demonstrates the effect of the protective approach. To have a more detailed look at the
results, first, the CFE results are discussed. As can be seen in Figures 3, 5, 7 and 9, neither
the S-SWIFT-R-F nor the S-SWIFT-R-M implementation of S-SWIFT-R is suited to detect
CFEs. Although an SDC reduction is certainly achieved for both variants, even when four
registers are protected, the remaining SDC ratio is between 10% and 20%. Techniques,
such as CFCSS and RASM, achieve a remaining SDC ratio of 5% or less, so clearly, neither
implementation deals with CFEs adequately.

When comparing S-SWIFT-R-F and S-SWIFT-R-M, it is clear from the results that
overall selecting the registers to protect based on their vulnerability, i.e., S-SWIFT-R-F
proves to provide better protection against CFEs. This is detailed in Table 4, which shows
the SDC ratios for the unprotected case studies, S-SWIFT-R-M and S-SWIFT-R-F when
protecting one register. As shown, the difference between these two approaches can be 0%,
e.g., BS case study, it can be small, e.g., the CU case study where the difference is only 2%,
but can be as large as 11%, e.g., CRC32 case study.

Table 4. The SDC amount in CFE fault injection.

Case Study Non-Hardening S-SWIFT-R-M S-SWIFT-R-F

BC 61% 29% 26%
BS 38% 25% 25%

CRC32 68% 47% 36%
MM 65% 45% 30%
QS 47% 29% 27%
CU 48% 31% 29%
FFT 59% 28% 19%
DIJ 52% 24% 16%

The results for the DFE fault injection, Figures 4, 6, 8 and 10, show a similar story when
comparing both approaches. Again, the S-SWIFT-R-F variant can achieve lower SDC ratios,
i.e., it deals with DFEs better, than the S-SWIFT-R-M approach. One side-note, however,
is that the results also show that when selecting the registers to protect based on their
memory interaction, the achieved reduction in SDC is more case study independent. This

Electronics 2022, 11, 3380 11 of 22

is indicated by the smaller box plots. Additionally, the DFE results show that there is little
difference, for either approach, between protecting only one register (Figure 4) or protecting
two registers (Figure 6). A noticeable extra SDC reduction is achieved when protecting
three registers, shown in Figure 8. When protecting four registers, both approaches perform
similarly with a remaining SDC ratio of approximately 4% to 5%, as indicated in Figure 10.
These last sets of results are not surprising since this boils down to almost protecting all
registers on our Cortex-M3 target. To protect 4 registers, 8 shadow registers are needed,
meaning 12 of the available 14 registers (including the link register and stack pointer) are
now used and protected.

Figure 3. CFE fault injection results for 1 register.

Figure 4. DFE fault injection results for 1 register.

Figure 5. CFE fault injection results for 2 registers.

Electronics 2022, 11, 3380 12 of 22

Figure 6. DFE fault injection results for 2 registers.

Figure 7. CFE fault injection results for 3 registers.

Figure 8. DFE fault injection results for 3 registers.

Figure 9. CFE fault injection results for 4 registers.

Electronics 2022, 11, 3380 13 of 22

Figure 10. DFE fault injection results for 4 registers.

5.4. Overhead

Figures 11 and 12 present the overhead results for all the selectively hardened case
studies. These results are normalized with a baseline built with the non-hardened version
of each case study. The bar lines of green, blue, red, and black indicate the number of
registers that have been hardened from 1 to 4, respectively. When highly accessed registers
are protected, the overheads increase considerably (as expected). This can be observed
clearly in BS, CRC, QS, and MM case studies when moving from 2 to 3 registers, which
causes a high overhead when protected. For example, for these case studies, the code size
and execution time overheads are 2.45×, 2.25×, 2.95×, and 2.75×, respectively.

Notice that the overhead results increase exponentially when more registers are pro-
tected. For example, in the BC case study, code size overhead goes from 1.1× (protecting
one register) up to 1.8× in the fully protected version of all four registers, whereas execution
time overhead ranges between 1.1× (protecting one register) and 2.2× (protecting all four
registers). In the BS case study, code overhead varies from 1.4× (protecting one register)
to 3.0× in the fully protected version, and execution time overhead ranges from 1.25×
(protecting one register) to 3.30× (protecting all four registers), as the same for other case
studies. If we only decide to protect one register in the BS case study, the overhead would
be only impacted by 1.4× in comparison to all four registers that cost 3.0× extra overhead.
It shows that selective hardening could be beneficial in a large number of applications in
comparison to heavy full software protection techniques.

BC BS QS MM CRC32 FFT CU DIJ
0

1

2

3

C
SO

1 Register 2 Registers 3 Registers 4 Registers

Figure 11. Measured code size for different case studies.

Electronics 2022, 11, 3380 14 of 22

BC BS QS MM CRC32 FFT CU DIJ
0

1

2

3

ET
O

1 Register 2 Registers 3 Registers 4 Registers

Figure 12. Measured execution time overhead for different case studies.

5.5. Industrial Case Study

In the last phase, to analyze the two approaches to select the desirable registers, they
have been applied to an industrial case study in the form of our small scale factory [31]. The
small-scale plant is divided into three stations: distribution, testing, and sorting. They form
a closed process in which workpieces are pushed out of a stacked magazine and brought
to the testing area, where only the best workpieces are transferred to the final station
for color sorting. The small-scale factory may discriminate between six distinct product
groups. It separates three categories of color: silver, red, and black, and for each color,
there are right and improper workpieces. Each station, as their names imply, contributes
to this process. A microcontroller powered by ARM Cortex-M3, the NXP LPC 1768, was
chosen to operate each station and hence run the control software. Figures 13–16 show the
results related to small scale factory for CFE, and DFE fault injection. For this case study,
the variants in which 1 and 2 registers are protected are implemented and experimented.
As with the CU, DIJ, and FFT case studies, this case study can also not be implemented
when protecting 3 and 4 registers due to the aforementioned compiler error. Overall, these
results tell a similar story as the results of the data processing case studies. Again, both
for CFE and DFE detection, S-SWIFT-R-F outperforms its S-SWIFT-R-M counterpart in
SDC reduction. However, the difference between the two register selection approaches
is less clearly shown in the NE ratio, with both approaches achieving similar numbers.
Especially in Figures 15 and 16, S-SWIFT-R-F even achieves the low remaining SDC ratio
typically achieved by techniques specifically designed for CFE or DFE detection, while only
protecting 2 registers. Similarly, the code size overhead and execution time overhead are
illustrated in Figures 17 and 18, which indicates the enhanced reliability with an overall
modest amount of overhead that is supposed to the system’s runtime and memory. This
clearly shows the strength of selective implementation and the achievement it could bring
as a light software protection mechanism. In the following, the future works and plans
have been explained.

Figure 13. CFE small scale factory fault injection results for 1 register.

Electronics 2022, 11, 3380 15 of 22

Figure 14. DFE small scale factory fault injection results for 1 register.

Figure 15. CFE small scale factory fault injection results for 2 registers.

Figure 16. DFE small scale factory fault injection results for 2 registers.

Distrstation TestStation SortingStation
0

0.5

1

1.5

2

C
SO

1 Register 2 Registers

Figure 17. Measured code size overhead.

Electronics 2022, 11, 3380 16 of 22

Distrstation TestStation SortingStation
0

1

2

ET
O

1 Register 2 Registers

Figure 18. Measured execution time overhead.

6. Future Work

There are two outlines for future research: one examines the effect of developing
S-SWIFT-R in a hybrid environment alongside hardware resilience techniques, and the
other is investing in further selective techniques and compares the procedures to acquire
the best outcomes. As the first outline, it is interesting to examine what the ideal hybrid
combination of S-SWIFT-R and hardware protection methods could be. Therefore, the cost
of using hardware techniques will be drastically reduced, as they will only be used on
selective parts of the program, while the protection could reach its highest percentage. In
the second phase, it is engaging to invest in additional selecting approaches and compare
the corresponding processes in order to obtain the greatest results. The methods, such as
S-SETA [32], S-RACFED [28], and S-DETECTOR [33], could be used in future studies to
see the impact of CFE and DFE techniques on the concept of selective hardening and the
impact of that on the variety of case studies.

7. Conclusions

This article examines different criteria for achieving selective hardening against soft
faults using the S-SWIFT-R technique, which is a software hardening technique. The goal is
to provide a selective strategy that preserves resources while providing maximum fault
coverage with little overhead. The analysis is undertaken from two angles to achieve
this goal: in the first case, the influence of two commonly used measures for picking
registers was investigated as follows: (1) choosing registers based on memory interaction
vs. (2) choosing registers based on susceptibility to the fault inserted into the system.
The findings reveal that, although the differences between these two approaches are minor,
picking registers depending on the fault introduced into the system may yield a superior
overall result. In the second part, we investigated the effect of increasing the number of
registers to protect S-SWIFT-R.

The improvement in overall dependability concerning system overhead has been
investigated. A variety of academic case studies have been analyzed. The overall results
show that increasing the number of registers to protect reliability will improve however,
the code size overhead and execution time overhead will increase as well. By the impact
shown in the result section, the designer could estimate the overhead cost that is in balance
with increased reliability for its application. Additionally, alongside with two goals of the
paper, we displayed that implementing a soft error detection system manually is a time-
consuming, slow, and mistake-prone operation. As a result, we demonstrated our GCC
compiler extension for S-SWIFT-R. This plugin interacts with RTL, a low-level intermediate
representation that may be immediately converted into machine code or assembly code.
After demonstrating and discussing the underlying workings of the compiler plugin, we
proved that the low-level implementations of S-SWIFT-R function as intended by executing
fault injection experiments on seven separate case studies. Using the compiler extension
reduces the work and time required to implement the S-SWIFT-R approach greatly.

Electronics 2022, 11, 3380 17 of 22

Author Contributions: Funding acquisition, J.B.; Investigation, M.N.; Methodology, M.N.; Resources,
J.V. and J.B.; Software, M.N. and J.V.; Supervision, J.V. and J.B.; Writing—original draft, M.N.;
Writing—review and editing, J.V. and J.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research has received funding from the European Union’s EU Framework Programme
for Research and Innovation Horizon 2020 under Grant Agreement No. 812.788 (MSCA ETN SAS).
Project website: https://etn-sas.eu (accessed on 17 Augest 2022). This research is partially funded by
the Research Fund KU Leuven.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this part, the results for all case studies in detail have been presented to give the
reader a close look into the results and their impact on different case studies. The results
presented on CFE and DFE fault injection in different case studies are represented in
Figures A1–A8, and as it is shown when the number of registers to protect is increased
toward A5 to A8 there are not enough shadow registers for CU, FFT, and DU case studies.

Figure A1. CFE fault injection results for 1 register.

https://etn-sas.eu

Electronics 2022, 11, 3380 18 of 22

Figure A2. DFE fault injection results for 1 register.

Figure A3. CFE fault injection results for 2 registers.

Electronics 2022, 11, 3380 19 of 22

Figure A4. DFE fault injection results for 2 registers.

Figure A5. CFE fault injection results for 3 registers.

Figure A6. DFE fault injection results for 3 registers.

Electronics 2022, 11, 3380 20 of 22

Figure A7. CFE fault injection results for 4 registers.

Figure A8. DFE fault injection results for 4 registers.

References
1. Blaškovic, K.; Candrlic, S.; Jakupovic, A. Systematic Review of Methodologies for the Development of Embedded Systems. Int. J.

Adv. Comput. Sci. Appl. 2021, 12, 410–420 . https://doi.org/10.14569/IJACSA.2021.0120149.
2. Cintra, L.R.; Mollon, M.F.; Kaneko, E.H.; Montezuma, M.A.F.; Mendonça, M. Development of a Wireless Data Acquisi-

tion System for Application in Real-Time Closed-Loop Control Systems. Int. J. Adv. Eng. Res. Sci. 2018, 5, 223–231.
https://doi.org/10.22161/ijaers.5.12.32.

3. Lombardi, M.; Milano, M.; Benini, L. Robust Scheduling of Task Graphs under Execution Time Uncertainty. IEEE Trans. Comput.
2013, 62, 98–111. https://doi.org/10.1109/tc.2011.203.

4. Edwards, R.; Dyer, C.; Normand, E. Technical standard for atmospheric radiation single event effects, (SEE) on avionics electronics.
In Proceedings of the 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No.04TH8774), Atlanta, GA, USA, 22 July 2004;
pp. 1–5. https://doi.org/10.1109/REDW.2004.1352895.

5. Thati, V.B.; Vankeirsbilck, J.; Boydens, J.; Pissort, D. Selective Duplication and Selective Comparison for Data Flow Er-
ror Detection. In Proceedings of the 2019 4th International Conference on System Reliability and Safety (ICSRS), Rome,
Italy, 20–22 November 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 10–15.
https://doi.org/10.1109/ICSRS48664.2019.8987731.

6. Reddy, V.K.; Rotenberg, E.; Parthasarathy, S. Understanding prediction-based partial redundant threading for low-
overhead, high- coverage fault tolerance. In Proceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems—ASPLOS-XII, San Jose, CA, USA, 21–25 October 2006; p. 83.
https://doi.org/10.1145/1168857.1168869.

7. Geetha, S.; Kumar, K.K.; Rao, C.R.; Vijayan, M.; Trivedi, D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym.
Sci. 2009, 112, 2073–2086. https://doi.org/10.1002/app.29812.

8. Liu, Q.; Jung, C.; Lee, D.; Tiwari, D. Compiler-Directed Soft Error Detection and Recovery to Avoid DUE and SDC via Tail-DMR.
ACM Trans. Embed. Comput. Syst. 2017, 16, 1–26. https://doi.org/10.1145/2930667.

Electronics 2022, 11, 3380 21 of 22

9. Restrepo-Calle, F.; Martínez-Álvarez, A.; Cuenca-Asensi, S.; Jimeno-Morenilla, A. Selective SWIFT-R: A Flexible Software-
Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems. J. Electron. Test. 2013, 29, 825–838.
https://doi.org/10.1007/s10836-013-5416-6.

10. Nicolaidis, M. Design for soft error mitigation. IEEE Trans. Dev. Mater. Reliab. 2005, 5, 405–418.
https://doi.org/10.1109/TDMR.2005.855790.

11. Lin, S.; Kim, Y.B.; Lombardi, F. A 11-Transistor Nanoscale CMOS Memory Cell for Hardening to Soft Errors. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2011, 19, 900–904. https://doi.org/10.1109/TVLSI.2010.2043271.

12. Martinez-Alvarez, A.; Cuenca-Asensi, S.; Restrepo-Calle, F.; Pinto, F.R.P.; Guzman-Miranda, H.; Aguirre, M.A. Compiler-
Directed Soft Error Mitigation for Embedded Systems. IEEE Trans. Dependable Secur. Comput. 2012, 9, 159–172.
https://doi.org/10.1109/TDSC.2011.54.

13. Restrepo-Calle, F.; Cuenca-Asensi, S.; Martínez-Álvarez, A.; Chielle, E.; Kastensmidt, F. Efficient metric for register file criticality
in processor-based systems. In Proceedings of the 2014 15th Latin American Test Workshop-LATW, Fortaleza, Brazil, 12–15 March
2014. https://doi.org/10.1109/LATW.2014.6841922.

14. Vankeirsbilck, J.; Penneman, N.; Hallez, H.; Boydens, J. Random Additive Control Flow Error Detection. In Proceedings of the
International Conference on Computer Safety, Reliability, and Security, Västerås, Sweden, 19–21 September 2018; Springer: Cham,
Switzerland, 2018; Volume 11093, pp. 220–234. https://doi.org/10.1007/978-3-319-99130-6_15.

15. Oh, N.; Mitra, S.; McCluskey, E. ED/sup 4/I: Error detection by diverse data and duplicated instructions. IEEE Trans. Comput.
2002, 51, 180–199. https://doi.org/10.1109/12.980007.

16. Guzman-Miranda, H.; Aguirre, M.; Tombs, J. Noninvasive Fault Classification, Robustness and Recovery Time Measurement
in Microprocessor-Type Architectures Subjected to Radiation-Induced Errors. IEEE Trans. Instrum. Meas. 2009, 58, 1514–1524.
https://doi.org/10.1109/TIM.2009.2014603.

17. Kumar, P.; Garg, R. Checkpointing Based Fault Tolerance in Mobile Distributed Systems. Int. J. Res. Rev. Comput. Sci. 2010,
1, 83–93.

18. Khudia, D.S.; Mahlke, S. Low cost control flow protection using abstract control signatures. ACM Sigplan Not. 2013, 48, 3–12.
https://doi.org/10.1145/2499369.2465568.

19. Zhu, D.; Aydin, H. Reliability effects of process and thread redundancy on chip multiprocessors. In Proceedings of the 36th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Philadelphia, PA, USA, 25–28 June 2006.

20. Rashid, F.; Saluja, K.; Ramanathan, P. Fault tolerance through re-execution in multiscalar architecture. In Proceedings of the
International Conference on Dependable Systems and Networks, DSN 2000, New York, NY, USA, 25–28 June 2000; pp. 482–491.
https://doi.org/10.1109/ICDSN.2000.857579.

21. Thati, V.B.; Vankeirsbilck, J.; Penneman, N.; Pissoort, D.; Boydens, J. An Improved Data Error Detection Technique for Dependable
Embedded Software. In Proceedings of the 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing
(PRDC), Taipei, Taiwan, 4–7 December 2018; pp. 213–220. https://doi.org/10.1109/PRDC.2018.00037.

22. Didehban, M.; Shrivastava, A. nZDC: A Compiler technique for near Zero Silent data Corruption Moslem. In Proceed-
ings of the 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, 5–9 June 2016; pp. 1–6.
https://doi.org/10.1145/2897937.2898054.

23. Isaza-González, J.; Restrepo-Calle, F.; Martínez-Álvarez, A.; Cuenca-Asensi, S. SHARC: An efficient metric for selective protection
of software against soft errors. Microelectron. Reliab. 2018, 88–90, 903–908. https://doi.org/10.1016/j.microrel.2018.07.008.

24. Arasteh, B.; Bouyer, A.; Pirahesh, S. An efficient vulnerability-driven method for hardening a program against soft-error using
genetic algorithm. Comput. Electr. Eng. 2015, 48, 25–43. https://doi.org/10.1016/j.compeleceng.2015.09.020.

25. Nikseresht, M.; Vankeirsbilck, J.; Pissort, D.; Boydens, J. A Selective Soft Error Protection Method for COTS Processor-based
Systems. In Proceedings of the 2021 International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 15–17 September 2021.

26. Vankeirsbilck, J.; Hallez, H.; Boydens, J. Automatic Implementation of Control Flow Error Detection Techniques. In Proceedings
of the 2019 3rd International Symposium on Computer Science and Intelligent Control, Amsterdam, The Netherlands, 25–27
September 2019; pp. 1–8. https://doi.org/10.1145/3386164.3389106.

27. Stallman, R. Using GCC: The GNU Compiler Collection Reference Manual; Free Software Foundation: Boston, MA, USA, 2003.
28. Vankeirsbilck, J.; Van Waes, J.; Hallez, H.; Boydens, J. Impact of selectively implementing control flow error detection techniques.

Internet Things 2020, 12, 100260. https://doi.org/10.1016/j.iot.2020.100260.
29. De Blaere, B.; Verstappe, E.; Vankeirsbilck, J.; Boydens, J. A Compiler Extension to Protect Embedded Systems Against Data Flow

Errors. In Proceedings of the 2021 XXX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 15–17 September
2021; pp. 1–6. https://doi.org/10.1109/ET52713.2021.9580074.

30. Gamma, E. (Ed.) Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley Professional Computing Series;
Addison-Wesley: Reading, MA, USA, 1995.

31. Vankeirsbilck, J. Advancing Control Flow Error Detection Techniques for Embedded Software using Automated Implementation
and Fault Injection. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2020.

Electronics 2022, 11, 3380 22 of 22

32. Chielle, E.; Rodrigues, G.S.; Kastensmidt, F.L.; Cuenca-Asensi, S.; Tambara, L.A.; Rech, P.; Quinn, H. S-SETA: Se-
lective Software-Only Error-Detection Technique Using Assertions. IEEE Trans. Nucl. Sci. 2015, 62, 3088–3095.
https://doi.org/10.1109/TNS.2015.2484842.

33. Nikseresht, M.; De Blaere, B.; Vankeirsbilck, J.; Pissoort, D.; Boydens, J. Impact of Selective Implementation on Soft
Error Detection Through Low-level Re-execution. In Proceedings of the 2021 IEEE International Conference on De-
pendable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing,
International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Tech-
nology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 25–28 October 2021; pp. 112–117.
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00031.

	Introduction
	Background
	Materials and Methods
	Step 1: Identifying Desirable Registers
	Selecting the Registers Based on Their Interaction with the Memory
	Selecting the Registers Based on Their Vulnerability

	Step 2: Selective Hardening Technique

	Automatic Implementation
	Experimental Validation
	Setup for the Experiment
	Criteria
	Fault Coverage
	Overhead
	Industrial Case Study

	Future Work
	Conclusions
	
	References

