
Intersection focused Situation Coverage-based

Verification and Validation Framework for Autonomous

Vehicles Implemented in CARLA

Zaid Tahir1() and Rob Alexander2

1,2 Assuring Autonomy International Programme, Department of Computer Science,

University of York, York, United Kingdom.
1Boston University, ECE Department, United States.

1[zaid.butt.tahir@gmail.com, zaidt@bu.edu], 2rob.alexan-

der@york.ac.uk

Abstract. Autonomous Vehicles (AVs) i.e., self-driving cars, operate in a safety-

critical domain, since errors in the autonomous driving software can lead to huge

losses. Statistically, road intersections which are a part of the AVs operational

design domain (ODD), have some of the highest accident rates. Hence, testing

AVs to the limits on road intersections and assuring their safety on road intersec-

tions is pertinent, and thus the focus of this paper. We present a situation cover-

age-based (SitCov) AV-testing framework for the verification and validation

(V&V) and safety assurance of AVs, developed in an open-source AV simulator

named CARLA. The SitCov AV-testing framework focuses on vehicle-to-vehi-

cle (V2V) interaction on a road intersection under different environmental con-

ditions and intersection configuration situations (start/goal locations), using situ-

ation coverage criteria for automatic test suite generation for safety assurance of

AVs. We have developed an ontology for intersection situations, and used it to

generate a situation hyperspace i.e., the space of all possible situations arising

from that ontology. For the evaluation of our SitCov AV-testing framework, we

have seeded multiple faults in our ego AV, and compared situation coverage-

based and random situation generation. We have found that both generation

methodologies trigger around the same number of seeded faults, but the situation

coverage-based generation tells us a lot more about the weaknesses of the auton-

omous driving algorithm of our ego AV, especially in edge-cases. Our code is

publicly available online and since the simulation software (CARLA) is open-

source, anyone can use our SitCov AV-testing framework and use it or build fur-

ther on top of it. This paper aims to contribute to the domain of V&V and devel-

opment of AVs, not only from a theoretical point of view, but also from the view-

point of an open-source software contribution and releasing a flexible/effective

tool for V&V and development of AVs.

Keywords: Autonomous Driving, Autonomous Vehicle, Self-driving car,

CARLA, Verification and Validation, Safety assurance, Automatic test case

generation, Situation Coverage, Coverage Criteria.

1 Introduction

Autonomous vehicles (AVs) are no longer an idea of science fiction, they are being

tested and even being used in some cities around the world. As seen in the past that

with the adoption of new technologies, new kinds of hazards arise, similarly AVs have

brought up a whole new concoction of hazards [1]. Since human lives are dependent

when dealing with AVs, this makes AVs a safety-critical system. Hence, the safety of

AVs cannot be taken callously.

The Problem of AV Safety Assurance . The safety standards applied to road vehicles

currently, such as the ISO/PAS 21448:2019 [2] and ISO 26262 [3], do not translate well

to AVs (SAE level 3 or above) [9], due to the fact that a human driver is required to

take over in case of an emergency. An emerging standard UL-4600 [4] does not assume

human drivers, but it only gives some guidelines to build a valid safety cases for auton-

omous systems, it is not at all prescriptive and can not be. Recently a new safety stand-

ard for automated vehicles has been published, the ISO 22737 [21], but it is quite lim-

ited. The ISO 22737 assumes low-speed automated driving, where routes are pre-de-

fined within restricted operational design domains (ODDs).

In order to tackle this issue of safety of AVs, researchers have been employing var-

ious strategies, mostly using simulation softwares as a baseline since on-road testing of

AVs is quite risky and costly. In [5] the authors attempt to model the distribution of

disturbances over failures in a vehicle-to-vehicle (V2) interaction as a safety validation

approach, this approach relies on selecting a particular set of disturbances to be injected.

Moritz K. et al [6] proposes automatic critical scenario generation based on minimiza-

tion of solution space, but this method relies quite a lot on discretization of solution

space and constraining the behaviour of the vehicles. Greg C. et al [7] have proposed

an agency-directed approach to test-suite generation for testing AVs, the scenario con-

sidered in their experiments is quite simple along with fidelity of simulation being quite

low.

The papers mentioned above are quite recent but one thing lacking in these and most

of the papers related to safety assurance of AVs is that the fidelity of simulators used

for their experimentations, is quite low. Since the fidelity of the simulations is low,

realistic camera images from the dash cam of the ego AVs can not be used since that

functionality is not available in low fidelity simulators, and doing online-testing [8] of

the perception system of AVs is really important while assuring the safety of the AV

automated driving algorithm, since many AVs on roads these days rely on camera only

(e.g., Tesla AVs). Along with no option of 3D rendering and live feed of dash-cam

images being obtained by ego AVs in low fidelity simulators, the physics engine of low

fidelity simulators is quite weak as well. The physics engine of such low fidelity simu-

lators usually models just the basic equations of motions while neglecting some basic

principles such a road friction, vehicles’ tire friction etc.

Exploration & Selection of AV Simulators. With such considerations of limitations

of AV simulators in mind, before moving on with the designs of our experiments and

developing and testing our situation coverage-based (SitCov) AV-testing framework,

we tried and tested a few AV simulators first before selecting CARLA, these are as

follows: (1) MATLAB Automated Driving (AD) Toolbox [10]: This tool box has the

upside of flexible scenario designing but the downside is that customizing experiments

with AV Autonomous Emergency Braking (AEB) activated is not easily doable and

there is no AV dash-cam option; (2) CarMaker [11]: This simulator has customizable

scenarios with AEBs activated but it uses TCL script which is an outdated programming

language and its interfacing with third party softwares is quite tedious and is not open-

source; (3) CARLA [12]: Scenario customization is really easy, it has a high fidelity

physics engine along with realistic 3D rendering and a long list of available sensors

including the AV dash-cam. It uses Python language which is the goto programming

language for researchers in various fields of Artificial Intelligence (AI). Also, CARLA

is opensource which was one of the main aims of our research, to provide the public an

effective AV-testing tool. Hence with all these upsides in mind, we selected CARLA

as our simulator. Our code is publicly available here [20].

AV Coverage-based Testing Methods. Since AVs are a complex integration of sys-

tems of systems (SOSs), they face countless hazards due to the huge search space of

inputs to the AVs. One methodology from software testing which is employed when

testing a huge input space is called coverage criteria [13], which suits testing of AVs as

well. Researchers have used the following coverage-based testing approaches for AVs

recently [1]: (1) Scenario Coverage [15]; (2) Situation Coverage [14], [33]; (3) Require-

ments Coverage [14].

Our Papers’ Contribution. In this paper we have developed a novel situation cover-

age-based (SitCov) AV-testing framework for the V&V and safety assurance of AVs

and have used situation coverage as the coverage criterion for our automatic test suite

generation, and we have come up with a unique/novel derivative of an ontology that we

named situation hyperspace for our situation coverage-based situation generation,

which we will elaborate in detail in the coming sections.

Situation Coverage. We define our situation coverage methodology as follows: Situa-

tion coverage is a coverage criterion which takes into account the external and internal

situations of the autonomous system (AV in our case), the automatic test suite generator

(SitCov AV-testing framework in our case) uses the situation coverage metrics to know

which situations have already covered and how many times each situation has been

generated, based on this information the next batch of situations would be generated

by the automatic test suite generator so that more of the situation space is covered and

close to uniform distribution is achieved in case of repetitions of situations if all situa-

tions have been covered once.

We would also like to define the term situation as the initial configuration of the input

space before the start of the simulation run (the temporal development of scenes).

Research Questions. In order to quantify the situation space around our ego AV we

have developed an ontology and used it to derive the situation hyperspace [16] which

we will elaborate further in the next section. In this paper we investigate the following

research questions (RQs): (1) RQ1: How does situation coverage-based test suite gen-

eration perform against random generation from a viewpoint of revealing seeded

faults? (2) RQ2: Does the situation coverage-based test suite generation provide any

additional value in terms of the confidence in the safety metrics outputs of our SitCov

AV-testing framework?

We will look to answer these RQs in the subsequent sections. The rest of the paper

is divided into the following sections. Section 2 presents the situation hyperspace that

is used to quantify the situations around the ego AVs for our SitCov AV-testing frame-

work. Section 3 breaks down the methodology and the development of the SitCov AV-

testing framework in CARLA. Section 4 lays out the experimentation results and its in-

depth analysis. Section 5 concludes the paper with some ideas for future work to build

further on top of this proposed framework.

2 Situation Hyperspace

The literal meaning of hyperspace is “space of more than three dimensions/axis”. By

situation hyperspace [16], we refer to the multi-dimensional external world around the

ego AV. This situation hyperspace has been constructed in a methodical way so that

our SitCov AV-testing framework can systematically navigate through it to generate

interesting and challenging situations for our ego AV using situation coverage-based

generation to make sure good coverage of the situation hyperspace is executed by the

SitCov AV-testing framework.

In order to come up with the ontology to derive the situation hyperspace for our

framework, we have examined various AV world ontologies and ODDs. These include

works by Krzysztof C. [17] in which the author has designed the operational world

model (OWM) of the AV and AV ODD model presented by National Highway Traffic

Safety Administration (NHTSA) [18]. We also studied the PhD thesis of Philippe N.

[19] in which it is highlighted that road intersections are one of the highest risk areas

among all road structures for road users with 30% of all road accidents occurring at

intersections, with 14% of road accidents on intersections resulting in death.

After dissecting the literature on ontologies regarding AV ODDs we have come up

with the situation hyperspace for our SitCov AV-testing framework as shown in Fig. 1

(left). In the block diagram of the situation hyperspace, we have the top layer as the

situation hyperspace axis, it is further divided into environmental conditions axis and

intersection axis. Other axis can be added to the situation hyperspace but right now

since we were implementing this in our SitCov AV-testing framework in CARLA, we

are using just two axes since we needed to keep the number low, of situation elements

in the situation hyperspace and their combinations, which was practical when imple-

menting it in our code. Nonetheless, these two axes are high priority axis as per litera-

ture that is another reason we have added and tested them first. The SitCov AV-testing

framework selects the situation elements from both environmental conditions and

intersection axes and combines them to generate the discrete situation where the AV

simulation actually runs in CARLA.

The Environmental Conditions Axis. For the environmental conditions axis, we fur-

ther subdivided it into the following situation elements, after studying a variety of AV

ODD and world ontologies [17, 18]: (1) Friction (road friction); (2) Fog Density; (3)

Precipitation; (4) Precipitation Deposits; (5) Cloudiness; (6) Wind Intensity; (7) Wet-

ness; (8) Fog Distance. These situation elements of the environmental conditions axis

can be seen in Fig. 2, each element has been discretized into 6 discrete bins and our

SitCov AV-testing framework chooses from those.

The Intersection Axis. In the intersection axis, T intersection has been chosen as the

axis to do AV-testing on since it has one of the highest accident rates [19]. We have

also highlighted other axis types that could be added to the intersection axis, such as 4-

legged intersection, offset 4-legged intersection, circular 4-legged intersection, differ-

ent skew angles of intersection legs in all types. But for the sake of simplicity and im-

plementation we have chosen T-intersection as the only element of the intersection axis.

In our SitCov AV-testing framework, we are essentially doing pairwise testing of

our ego AV with an adversarial other vehicle which we will now refer to as other vehi-

cle (OV). The reason for selecting pairwise encounters of the ego AV with the OV is

that V2V accident rates on intersections are way above all other types of accidents on

intersections as mentioned here [19]. The pairwise testing between the ego AV and OB

is done on a T-intersection in different environmental conditions selected from the en-

vironmental conditions axis by our framework, and in different intersection configura-

tions i.e., different start and goal locations for the ego AV and OV, selected from the

intersection axis, as seen in Table-1. For the different intersection configurations, we

have come up with collision-points c1, c2, c3, c4 as seen in the center of the T-intersec-

tion in Fig. 1(right), these are the closest point of approach (CPA) for our ego AV and

OV for their pairwise interaction during each simulation run. This CPA approach has

been inspired from the work of [22]. The four collision-points we have come up with

are one of the highest risk areas on an intersection and are similar to the conflict-points

on intersections mentioned in [17]. Hence, testing our ego AV on one of the most dan-

gerous road structures (intersection) on the highest risk areas (intersection conflict-

points) would be an effective way to stress the ego AV and test it thoroughly, which

our SitCov AV-testing framework is doing.

For the pairwise AV-testing on the T-intersection, we will consider right-hand traf-

fic, the main reason being that many road ontologies that we have followed, used right-

hand traffic. There will be three possible start and goal locations for the vehicles (AV

on the T-intersection. As we would only consider the vehicles to be moving inwards

towards the T-intersection after spawning at their start locations, we are considering

cross-collisions [23] at the moment, we will incorporate diverging and merging type

collisions [23] in the later stages also. The SitCov AV-testing framework generates the

OV such that it comes in conflict with our ego AV at the CPA i.e., one of the collision-

points (c1, c2, c3, c4).

Notations For Intersection Pairwise Conflict-Point Interactions. Notations for the

intersection pairwise conflict-point interactions between ego AV and the OV (as seen

in Table-1) are elaborated as follows: (1) L, R, and B, define left, right and base legs of

the T-intersection; (2) S implies start location variable; (3) Sx, x subscript defines the

type of vehicle. It can either be AV or OV in the pairwise encounter; (4) Sxy, y subscript

defines the location of the start point S of the vehicle; (5) G implies goal location vari-

able; (6) Gz, z superscript indicates the final destination/goal location of the vehicle; (7)

The multiply operator “x”, is the intersection pairwise conflict-point interactions oper-

ator between the variables as seen in the “Conflict Point Interaction” column of Table-

1, the notations in that column essentially tells what were the start/goals locations of

the ego AV, the OV and the particular conflict-point where the ego AV and OV met

during a simulation run by the SitCov AV-testing framework.

Intersection pairwise conflict-point interactions when ego AV starts at the base, have

been shown in Fig. 1(right) along with their notations and can be compared with Table-

1. The complex notations shown as conflict-point interaction column in Table-1 have

been simplified in the last column of the Table-1, i.e., intersection situation labels, and

these simplified labels will be used to represent these complex conflict-point interac-

tions between our ego AV and the OV. These intersection situation labels are the situ-

ation elements of our intersection axis of the situation hyperspace. We encourage the

readers to see how these complex conflict-point interactions of the intersection axis

have been modelled in our code [20] using dictionaries and lists in Python language.

The next section elaborates how does the SitCov AV-testing framework selects the

situation elements from environmental conditions and intersection axis of the situation

hyperspace, to generate the discrete situation in which the V2V interaction between the

ego AV and OV takes place in the CARLA simulator. The next section also highlights

key elements in the development of the SitCov AV-testing framework in CARLA.

Fig. 1. Situation hyperspace block diagram (left). T-intersection with notations (right).

Table 1. Intersection Situations & Notations

Fig. 2. Environmental conditions axis subdivision elements.

3 The SitCov AV-Testing Framework

This section lays out the development of the proposed SitCov AV-testing framework

from top to bottom, from the theory to its implementation in CARLA. Below we start

with explaining the theoretical mechanics of our SitCov AV-testing framework along

with its connection with test adequacy criteria from software testing [25].

3.1 Situation Coverage-based AV-testing Test Suite Generation Methodology

In this subsection we will briefly explain the methodology behind the situation cover-

age-based situation generation for AV-testing by our SitCov AV-testing framework.

Test Adequacy Criteria for AV-Testing. The inspiration of the SitCov AV-testing

Framework has been taken from the concept of test adequacy criterion from software

testing [25], which essentially states that test adequacy criterion provides a stopping

rule and/or a measure of test quality. A test adequacy criterion highlights the testing

requirements and the test suits needed to satisfy those requirements, and it determines

the observations required during the process of testing.

Sr
Start loc

of AV

Goal loc of

AV
Conflict Point Interaction

Intersection

Situation Label

1 SAVB

G
R

AVB C1: SAVB G
R

AVB × SOVL G
R

OVL IntSit-8

G
L
AVB

C1: SAVB G
L
AVB × SOVL G

R
OVL IntSit-5

C2: SAVB G
L
AVB × SOVR G

L
OVR IntSit-6

C2: SAVB G
L
AVB × SOVR G

B
OVR IntSit-7

2 SAVR

G
B

AVR

C2: SAVR G
B

AVR × SOVB G
L
OVB IntSit-10

C4: SAVR G
B

AVR × SOVL G
R

OVL IntSit-11

C4: SAVR G
B

AVR × SOVL G
B

OVL IntSit-12

G
L
AVR C2: SAVR G

L
AVR × SOVB G

L
OVB IntSit-9

3 SAVL

G
B

AVL C4: SAVL G
B

AVL × SOVR G
B

OVR IntSit-1

G
R

AVL

C4: SAVL G
R

AVL × SOVR G
B

OVR IntSit-2

C1: SAVL G
R

AVL × SOVB G
R

OVB IntSit-3

C1: SAVL G
R

AVL × SOVB G
L
OVB IntSit-4

Environmental

Conditions Axis

Precipitation
Precipitation

Deposits
Cloudiness

Wind

Intensity
Wetness Fog Distance

Friction Fog Density

In this paper, we have made a connection between this concept of test adequacy

criterion from software testing with AV testing, by applying it in our SitCov AV-testing

framework as seen in Fig. 3 (right). Our SitCov AV-testing framework utilizes situation

hyperspace for situation coverage metrics along with fault injection. This will provide

us with reliable test adequacy criteria-based metrics. Fig. 3 (right) shows the test ade-

quacy criteria highlighted in blue being employed by our SitCov AV-testing frame-

work, further detailed definitions of these test adequacy criteria along with their con-

nection with our framework are out of the scope of this paper, the test adequacy criteria

definitions can be found here though [25].

Handling the AV Nominal vs Functional Safety Problem. The safety assurance of

AVs is particularly a challenging task due to AVs being a cyber-physical, we not only

have to make sure that the functional safety of the AV is addressed i.e., software/hard-

ware of the AV is bug-free and all the functions are being executed correctly, but also

that, we have to make sure that we have addressed the nominal safety [26] aspect of the

AV as well i.e., making sure the AV is making safe and logical decisions, assuming

that the software/hardware of the AV are operating error-free.

To address both the issues of AV functional and nominal safety, we will use the

fundamentals provided by software testing as described above in conjunction with

agent-based simulation in CARLA.

Automatic Test Suite Generation of our SitCov AV-testing Framework. The situ-

ation coverage-based generation of the discrete situations from the situation hyperspace

is done by counting how many times each bin of the situation elements of each of the

environmental conditions and intersection axis, has been generated. Then the counts

(number of times that bin of the situation element was used for a discrete situation gen-

eration simulation run) of each bin of a particular situation element of an axis of the

situation hyperspace, let’s say the precipitation element from the environmental condi-

tions axis, or the intersection situation labels from the intersection axis as mentioned in

Table-1, are fed into a SoftMax function to generate a normalized probability distribu-

tion over those bins, then those probability values are inverted and normalized and act

as weights to a weighted random number generator, higher the weight, higher the prob-

ability of that bin to be selected. In simple terms, those bins of a situation element, let’s

say the precipitation element of the environmental conditions axis or the intersection

situation labels from the intersection axis, that have been generated fewer times than

the other bins (for discrete situation generation), have the highest probability to be se-

lected by the SitCov AV-testing framework for the discrete situation generation in the

next simulation run. This way we aren’t setting hard rules that all situations have to be

generated exact equal number of times, we are leaving some room for exploration along

with exploitation by using weighted random number generation while still making sure

that with a very high probability good coverage of the situation hyperspace is being

achieved. This whole process of situation coverage-based generation from the situation

hyperspace can be seen in our code here at [20], this process can also be seen in the

block diagram of the SitCov AV-testing framework in Fig. 3 (left), along with other

processes that are occurring such as keeping track of collisions happening between ego

AV and OV, and increasing the counter of those situation element bins that were used

to generate the last discrete situation for the simulation run, etc.

Fig. 3. SitCov AV-testing framework block diagram (left). Test adequacy criteria used (right).

The AV-IP Problem & Our Solution. A really important but seldom talked about

problem for the practical V&V and safety assurance of AVs is the IP (Intellectual Prop-

erty) problem. As top tech (Waymo, Apple, etc.) and car manufacturing (Tesla, BMW,

etc.) companies compete with each other in the AV domain, with projected trillions of

dollars of revenue on the line, these companies are investing millions and billions of

dollars in the AV industry, and to say the least, they would not be very pleased to share

their entire AV IPs with third party safety experts for the sole purpose of V&V and

safety assurance of AVs.

Keeping in view, this IP problem of AVs, we have designed our SitCov AV-testing

framework to treat AVs as a black-box or in some instances as a grey-box, which will

enable our research to be industry ready and hopefully contribute directly to saving

lives in the process. The users of our SitCov AV-testing framework will just have to

insert their AV autonomous driving stack as a black-box and run the SitCov AV-testing

framework, the framework will output situation coverage metrics of all situation ele-

ments of the situation hyperspace and those situations that the AV autonomous driving

stack cannot deal with will be highlighted along with the percentages of the situation

covered in the situation hyperspace and their repetitions. This process will be further

elaborated in the experiments results and analysis section.

3.2 Developing The SitCov AV-Testing Framework in CARLA

This subsection presents the main softwares used for the development and experimen-

tation of the SitCov AV-testing framework. Following were the baseline software pack-

ages used: (1) CARLA [12]; (2) Scenario Runner [27]; (3) Tensorflow Object Detection

API [28]. All of these software packages are opensource and Python is the program-

ming language used to run them. A few screenshots of the development of the SitCov

AV-testing framework can be seen in Fig. 4. Further elaboration of development of the

framework is below.

Using CARLA & Scenario Runner for Simulations. As stated in the previous sec-

tions that CARLA was chosen due to its upsides as compared to other AV simulators

that includes it being opensource, regularly updated with previous versions maintained

on GitHub website, 3D rendering and AV dashcam video feed are available along with

other sensors. We have used Scenario Runner [27] on top of CARLA for the develop-

ment of our SitCov AV-testing framework. Scenario Runner is just an API built on top

of CARLA software and it is used to generate certain scenarios. The intersection sce-

narios generation from Scenario Runner was of our interest and we edited that intersec-

tion class to run our AV-testing test suites on a T-intersection by generating situation

coverage-based situations from the situation hyperspace that we designed in Python

using dictionaries and lists [20].

Fig. 4. Development of our SitCov AV-testing framework in CARLA and Scenario Runner.

The tools provided in CARLA such as waypoints highlighting and their interconnection with

each other and other road structures such as intersections etc., were really helpful in speedy de-

velopment of our SitCov AV-testing framework.

Developing Automated Driving Algorithm for Ego AV using Tensorflow Object

Detection API in CARLA. In order to evaluate our SitCov AV-testing framework we

needed an autonomous driving (AD) algorithm for the ego AV in our simulation runs,

and we also need an algorithm to drive the OV as well since our SitCov AV-testing

framework ensures that the ego AV and OV meeting in the intersection at the collision-

points shown in the previous section, under different situations generated from the sit-

uation hyperspace using situation coverage-based generation. So, for the ego AV au-

tonomous driving, ideally, we would have liked to get that algorithm from an OEM

such as Tesla, then our SitCov AV-testing framework would have been properly eval-

uated, since we would have had high confidence that there was a very low probability

of the ego AV crashing in the OV due to faults in the autonomous driving algorithm.

Even though our SitCov AV-testing framework would have treated the ego AV auton-

omous driving algorithm as a black-box, we still wouldn’t have been able to get such

an algorithm from an OEM easily. So, we had to develop it on our own autonomous

driving algorithm for the ego AV.

Types of Autonomous Driving Algorithms. We had the option to choose from 3 over-

arching pipeline of autonomous driving as mentioned in [12]: (1) Modular pipeline; (2)

Imitation learning; (3) Reinforcement learning. Imitation learning and reinforcement

learning pipeline of autonomous driving isn’t very effective when it comes to rule-

based driving. Imitation learning does perform a lot better than reinforcement learning

in rule-based driving [12] but modular pipeline is the best option for rule-based driving

and it is what actual driving is like in the real world as well, traffic-rules-based. Hence,

we chose modular pipeline for our ego AV autonomous driving.

Our Modular Autonomous Driving Pipeline. Our modular autonomous driving pipeline

has following main stages: (1) Perception; (2) Local Planner; (3) Continuous Control-

ler. The local planner stage was already implemented in CARLA examples, which used

A-star algorithm [29] to compute the optimal path from one point of the map to the

other using the roads and following traffic rules. We used this directly and our assump-

tion here is that our ego AV has an ideal GPS sensor which tells it the exact location

because the local planner we are using is accessing the ground truth for accessing the

location of the location of the ego vehicle which is the ego AV or OV, since we are

using this local planner in both.

The continuous controller stage is a PID controller for lateral and longitudinal con-

trol of the ego vehicle, and this was also already implemented in CARLA that we used

directly for the ego AV and OV controllers.

The Perception Stage (Using Deep Neural Network). The ego AV uses one more stage

for its autonomous driving that the OV does not, it is the perception stage. Just like

Tesla AVs, we are using only camera as the perception sensor for our ego AV. We are

using a very deep Single-Shot multi-box Detection (SSD) Convolutional Neural Net-

work (CNN) pre-trained on 350,000 images of the MS COCO dataset, the SSD mo-

bilenet [28, 30, 31], to detect the incoming OV and locate its position in the dash-cam

feed (images) of the ego AV and to apply emergency brakes (AEBs) if the OV is too

close. We are using the Tensorflow Object Detection API to implement this pre-trained

SDD mobilenet CNN.

Parameters of Object Detection. The perception stage of our ego AV has three main

parameters that can be set for efficient object detection using the pre-trained SDD mo-

bilenet CNN that is taking images from the dash-cam of the ego AV in CARLA. Fol-

lowing are the three parameters:

1. Threshold of distance for object detection: To detect the distance of the OV from

the image we are using a computer vision technique [32] to check how much per-

centage of the image feed is the detected OV taking up, the closer is the OV to the

ego AV, the more percentage of the image from the ego AV would contain the OV

and at a certain threshold value, our ego AV will apply the AEBs to avoid collision.

We will refer to this threshold value as the “threshold of distance for object detec-

tion” in the later sections.

2. Probability of detection for object detection threshold: This is the threshold value

for probability output from the SDD mobilenet CNN, which tells us the probability

if there is a car detected in the images received from the dash-cam of our ego AV in

CARLA. Since we are doing V2V pairwise testing with an OV, we only need to care

about the probability of detecting a car in the received images, though we could also

check for detection of buses, trucks, people, animals, etc., we recommend including

other dynamic agents in future work. Setting this parameter for probability of detec-

tion is really important, i.e., the minimum probability value that our ego AV would

consider as a detection of an OV in the image. Since too high a value of this param-

eter would result in missing detection and collisions happening in extreme weathers

such as heavy rain and fog etc., where probability of detection of OV would be lower

even if it was in front of our ego AV.

3. Centering limits parameters: These parameters look at if the OV detected by our

SDD mobilenet CNN is close to the center of the received image. If the detected OV

is too far away from the center, even if the OV is really close, AEBs are not activated,

So, this makes up the autonomous driving pipeline of our ego AV, provides a useable

driving pipeline to test the main focus of this paper, the SitCov AV-testing framework

and its implementation in CARLA. A bit of effort was also put into implementing the

autonomous driving modular pipeline in CARLA as elaborated above and we would

like to recommend the readers to have a look at its implementation in the code if they’re

looking to get a working implementation of autonomous driving [20]. Next, we will

show the screenshots of a few experiments, i.e., the discrete situations generated by our

SitCov AV-testing framework, just so that the readers get a gist of how these experi-

ments are happening practically in CARLA software with the test suites generated by

our SitCov AV-testing framework.

Running Test Suites on the SitCov AV-Testing Framework. In Fig. 5 we can see

experiment #1 generated by the SitCov AV-testing framework. The temporal progres-

sion of the simulation run starts from top left image to the top right, then the bottom

left and the last timestamp is the bottom right picture in Fig. 5. The SitCov AV-testing

framework selected a sunny day with clear weather and generated the ego AV on the

left side of the intersection and the OV was generated on the top side of the intersection

as seen in the first picture of the temporal sequence of experiment #1, all these situations

were selected from the situation hyperspace using situation coverage-criterion by our

framework. In all the pictures we can see another window opened up in the top right

corner of each picture, this window is showing the images received by the dash-cam of

the ego AV and it is also showing the object detection probability values and detection

boxes if an OV is detected. As seen in the third picture of the temporal sequence, the

ego AV has detected the OV really close to it and close to its centers as well (the path

of progression of the AV) and the probability of detection is above the threshold value

we have set, hence AEBs are activated and the ego AV comes to a full stop and a

collision is avoided and the experiment is a success. This OV can be seen going away

in the last picture of the temporal sequence.

Fig. 6 shows experiment #2, in which the SitCov AV-testing framework has gener-

ated a heavy rain and a foggy discrete situation from the situation hyperspace. The OV

is coming in from the top of the intersection and the ego AV is coming in from the right

side of the intersection. Due to the heavy rain and fog, the ego AV was not able to

detected the OV in time for AEB and a collision happened between the two. This acci-

dent was avoidable if the ego AV had detected the OV just a few moments earlier.

Fig. 7 show experiment #3, in which there is just a little bit of rain but heavy fog and

a lot of precipitation deposits on the road, selected by our SitCov AV-testing frame-

work. The OV is coming in the intersection from the left side and the ego AV is coming

in from the right side and the OV suddenly turns towards the ego AV and collides.

There was much the ego AV could do as both vehicles were following the traffic rules

before the OV suddenly turned towards the ego AV and collided. We will refer to such

accidents/failures as unavoidable accidents/failures.

Fig. 5. Experiment #1 Sunny Day Accident Avoided: Success.

Fig. 6. Experiment #2 Heavy Rainy & Foggy Day & Avoidable Accident Collision: Fail.

Fig. 7. Experiment #3 Rainy Foggy Day & Unavoidable Accident Collision: Fail.

4 Experimentation Results & Analysis

We provide the details of our experimentation setup and a detailed analysis and evalu-

ation of our SitCov AV-testing framework in this section. We have carried out experi-

ments to evaluate our SitCov AV-testing framework and our goal is to answer our re-

search question RQ1 and RQ2, that how well does our SitCov AV-testing framework

perform compared to random situation generation, and what additional useful infor-

mation does our SitCov AV-testing framework gives us that random situation genera-

tion cannot.

 For the experimentations we used a core-i7 PC with a 4GB GPU and 32 GB RAM.

We ran experiments in sets of 20, and repeated it 5 times with a different starting ran-

dom seed, to make it a total of 100 experiments. Each set of 20 experiments took almost

30 minutes to run, so one set of 100 experiments took about 2.5 hours.

Evaluation Metrics and Seeding Faults. We use seeded faults to evaluate our SitCov

AV-testing frame. The process starts with us seeding a few faults in the ego AV soft-

ware, and when the ego AV crashes in the OV, we say that the seeded fault has been

triggered. But there is a caveat, as we mentioned in the previous section of our auton-

omous driving algorithm development, we have used a fairly simple algorithm and just

one RGB-camera sensor on our ego AV, hence there will be a lot of non-seeded back-

ground fault causing failures (crashes of ego AV in OV) and apart from that there will

be some unavoidable accident situations as shown in Fig. 7 that when the OV suddenly

turns towards the ego AV.

So, we will denote crashing of ego AV into the OV as a failure, whether it is due to

a seeded fault being triggered or it is due to non-seeded background faults or simply

unavoidable failures as mentioned above. Then we will first conduct experimentations

without seeding any faults and note how many failures we get per 100 experiments

which we will call as general failures (which include both non-seeded background

faults and unavoidable accident situations), then we will seeded faults into the same

100 experiments (with the same random seeds, so that the discrete situations generated

are the same as what they were for no seeded faults experimentations), and the extra

failures counts exceeding the general failure counts will be labelled as those seeded

faults being triggered.

Seeded Faults. Following are the three types of faults that have been seeded in our ego

AV software, we have targeted parameters of object detection, detailed in the previous

section, for seeding our software faults:

1. Fault #1: Setting Probability of Object Detection Threshold really high, i.e., to 0.95.

Our ego AV will detect the OV in front of it only if the probability of its detected

outputted by the deep convolutional neural network is 0.95.

2. Fault #2: Setting the Centering limits parameters too rigid, i.e., our ego AV will

only label the OV in front of it as a hazard, even if it is dangerously close to it, if the

OV is in the exact center of the image received by the ego AV dash-cam.

3. Fault #3: Setting the Threshold of distance for object detection to a really low value,

i.e., our ego AV will only consider the OV as a hazard if it is extremely close to it

because we have lowered the threshold of distance for object detection parameter.

4.1 Intersection Situation Generation Results

In this subsection we are highlighting the performance of our SitCov AV-testing frame-

work vs random situation generation w.r.t the intersection situations being generated

from the intersection situation axis as mentioned in Table-1. These experiments will

explore which intersection situations are dangerous for our ego AV, having the highest

failure rates.

No Faults Seeded Intersection Situations Experiments. Our first set of experiments

compares intersection situation generation results of our SitCov AV-testing framework

vs random generation, when no faults have been seeded.

Fig. 8. SitCov-based intersection situation generation & failure distributions, no faults seeded.

11

8

10

9

6 6 6

11

7

12

8

6

9

6

0

6

0 0

1 1

0 0

6

1

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a
ilu

re R
a
te

N
u

m
b

er
 o

f
T

im
es

 E
v
en

t
E

x
ec

u
te

d

Intersection Situations

SitCov-based Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*No-Faults Seeded

Total Experiments = 100

Total Failures = 30

Fig. 9. Random intersection situation generation & failure distributions, no faults seeded.

In Figs. 8, 9 the labels mentioned on the x-axis are the intersection situation labels that

have been shown in detail in Table-1, which mention particular intersection situations

as derived from the notations used and explained in the previous sections. The labels

will be used in the coming figures as well.

As seen in Fig. 9, random intersection situation generation has quite erratic failure

rates values vs the situation coverage-based (SitCov-based) intersection situation gen-

eration from our SitCov AV-testing framework in Fig. 8, even though their total number

of failures are equal. This is due to the uneven distribution of situations produces by the

random generation, which is why we can see for some intersection situations the failure

rate is 100% for random generation in Fig. 9, where as this is not the case for situation

coverage-based intersection situation generation in Fig. 8, because each intersection

situation was tested somewhat evenly and hence we can have more confidence in the

failure rates of the intersection situations provided by our SitCov AV-testing frame-

work and then we can in-turn look at the ego AV autonomous driving algorithm and

see why does it have high failure rates in these particular intersection situations and

how can the autonomous driving be improved.

Faults Seeded Intersection Situations Experiments. Fig. 10 compares the results of

SitCov AV-testing framework with random generation. On the left colored in red and

black is our framework’s results and on the right in yellow and blue is the random

generation results. The top row results are when fault #1 is seeded, the middle row

results are when fault#2 is seeded and the bottom row results are when fault #3 is

seeded.

Again, we can see that the distribution of intersection situation generation of our

SitCov AV-testing framework is quite uniform as compared to the random generation,

hence the failure rates are more reliable. Hence, we will analyze the results of our Sit-

Cov AV-testing framework from Fig. 10, below.

As seen in Fig. 10, fault #1 is triggered the most, which tells us that the parameter

Probability of Object Detection Threshold, that we tinkered as a part of our fault #1

seeding, is extremely important for autonomous driving.

14

12

7

3

10

3

7

13

18

7

1

5

12

10

0

3
2

0 0 0

2

0
1

0
0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re R

a
te

N
u

m
b

er
 o

f
T

im
es

 E
v
en

t
E

x
ec

u
te

d

Intersection Situations

Randomly Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*No-Faults Seeded

Total Experiments = 100

Total Failures = 30

After fault #1, fault #2 is triggered the most (Fig. 10), which refers to the Centering

limits parameters, which detects the OV as a hazard only when it is within a certain

distance from the center of the line of sight of ego AV, i.e., from the center of the image

taken by the dash-cam on the ego AV. This means that the developers need to be wary

of not only the vehicles coming in the line of sight of the ego AV, but also vehicles

further out in the field of view (FOV) of the ego AV.

Fault #3 is triggered the least (Fig. 10) but its failure rate is still really high as com-

pared to when no faults were seeded (Fig. 8), which highlights the importance of the

parameter which was tinkered as a part of fault #3, i.e., the Threshold of distance for

object detection. This tells us that developers of AVs should not be aggressive while

setting the distance Threshold of distance for object detection to a really low value and

that AVs need to have some padding while setting safety distance from the OVs in front

of it so that even if the ego AV or the OV makes a mistake, the ego AV has some extra

safety distance to make up for that mistake.

Fig. 10. SitCov-based vs Random intersection situation generation & failure distributions, fault-

1 seeded.

Table-2 two shows the number of triggered faults from the experiments shown in Fig. 10, by

subtracting the total failures of these faults seeded experiments from Fig. 10 by the failures

caused when no faults were seeded in experiments shown in Fig. 8, 9.

11

8

10

9

6 6 6

11

7

12

8

6

11

8

6

9

6

1

0

4

2

3

4 4

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
r
e R

a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Intersection Situations

SitCov-based Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #1 Seeded

Total Experiments = 100

Total Failures = 58

14

12

7

3

10

3

7

13

18

7

1

5

14

10

6

3

8

2 2

11

6

2

1

4

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

e
s

E
v

e
n

t
E

x
e
cu

te
d

Intersection Situations

Randomly Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #1 Seeded

Total Experiments = 100

Total Failures = 69

11

8

10

9

6 6 6

11

7

12

8

6

11

7

1

9

5

1

0

6

2 2

5

2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re

 R
a

te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Intersection Situations

SitCov-based Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #2 Seeded

Total Experiments = 100

Total Failures = 51

14

12

7

3

10

3

7

13

18

7

1

5

12 11

0

3

7

1
0

8
8

2

0

2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

e
s

E
v

e
n

t
E

x
e
cu

te
d

Intersection Situations

Randomly Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #2 Seeded

Total Experiments = 100

Total Failures = 54

11

8

10

9

6 6 6

11

7

12

8

6

11

6

0

9

2

0

2 2

0 0

3

2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Intersection Situations

SitCov-based Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #3 Seeded

Total Experiments = 100

Total Failures = 37

14

12

7

3

10

3

7

13

18

7

1

5

14

12

2 3

1 1
0

3

2

0
1 1

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

IntSit-1 IntSit-2 IntSit-3 IntSit-4 IntSit-5 IntSit-6 IntSit-7 IntSit-8 IntSit-9 IntSit-10 IntSit-11 IntSit-12

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

e
s

E
v

e
n

t
E

x
e
cu

te
d

Intersection Situations

Randomly Generated Intersections Situations & Failures Distribution Chart

 # of Situations Generated

 # of Failures

 FailureRates

*Fault #3 Seeded

Total Experiments = 100

Total Failures = 40

Table 2. Faults Triggered

Fig. 11 shows the faults triggered by our SitCov AV-testing framework vs random gen-

eration from the experiments shown in Fig. 10, and as seen in Fig. 11 the faults being

triggered by SitCov-based generation and random generation are somewhat similar in

number but the additional benefit that our SitCov-based generation gives us is that the

failures rates/fault triggering rates are much more reliable since each situation is thor-

oughly tested by the SitCov AV-testing framework as compared to random generation

where one out of the 12 possible intersection situations (as mentioned in Table-1) could

have been tested only one time whereas the other 11 would have been tested 99 times

in total, incase of our 100 simulation runs experiments.

Fig. 11. Faults triggering of SitCov-based vs random intersection situation generation

4.2 Environmental Conditions Situation Generation Results

We will focus on the environmental conditions situations from the environmental con-

ditions axis (Fig. 2) when comparing our SitCov AV-testing framework with random

generation. It is to be noted that actually all of these situation elements from environ-

mental conditions axis and intersection axis are interlinked and correlated as when the

discrete situation is generated, it selects some values of all the situation elements from

all the axis (environmental conditions axis and intersection axis) from the situation hy-

perspace, but we are looking at the situation elements separately during our evaluation

since analyzing the correlations between the situation elements and their effect on the

success/failure of ego AV would be a research project on its own and we definitely

recommend it for future work.

0 5 10 15 20 25 30 35 40 45

Fault-1

Fault-2

Fault-3

Number of Times Faults Triggered

F
a

u
lt

s
T

ri
g
g

er
ed

 p
e
r

1
0

0
 R

u
n

s

Faults Triggering Comparison for Random vs SitCov Intersection Situation Generation Situation Coverage-based

Generation

 Random Generation

No Faults Seeded Road Friction Experiments. Fig. 12 shows the results of our Sit-

Cov AV-testing frame (in the red and black graph) vs random generation (in the blue

and yellow graph) w.r.t road friction, which is a situation element from the environ-

mental conditions axis. Friction values have been divided into 6 bins between 0 and 1

with lowest value being 0.1. The experiments show that random generation as expected

has generated highly uneven distribution of friction bins whereas our SitCov AV-

testing framework has generated more of an even generation of friction bins. The results

from both the graphs in Fig. 12 show us that the failure rate does not get higher as the

road friction gets lower, rather the failure rate across all the friction bins is somewhat

evenly distributed. This means that this situation element, friction, doesn't affect the

success of our ego AV directly that much otherwise it would have had a high failure

rate for lower friction values.

Fig. 12. SitCov-based vs Random friction situation generation, no faults seeded.

Faults Seeded Precipitation Deposits Experiments. Fig. 12 displays the results of our

SitCov AV-testing framework w.r.t the situation element Precipitation Deposits when

no seeded faults (top left), fault #1 seeded (top right), fault #2 seeded (bottom left),

fault #3 seeded (bottom right).

 As seen in Fig. 13, the rise in the failure rate can be seen as the value of precipitation

deposits increases in all 4 graphs (no faults seeded and the 3 graphs of the seeded faults).

This is due to the fact that our ego AV is relying on the images coming from the dash-

cam sensor on the ego AV and uses ML to detect the OV in front of it. The precipitation

deposits produce a lot of noise in the incoming images which leads to errors in detecting

the OV which causes the ego AV to miss detecting the hazard in front of it, leading to

a crash/failure. We can see a big jump in failure rate when fault #1 is seeded, this tells

us as we mentioned before that the parameter which fault #1 corresponds to is Proba-

bility of Object Detection Threshold, and when the image received by the dash-cam on

the ego AV is already noisy due to the precipitation deposits, and we introduce the fault

#1 which is having a very high detection threshold, our ego AV simply fails to detect

the OV in front of it many times and hence has a high failure rate when the precipitation

deposits value is high especially when the fault #1 is seeded.

17
18

13

17 18
17

6 6
4

4

6

4

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

0.1 0.2 0.4 0.6 0.8 1

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Friction Values

SitCov-based Generated Environmental Situations (Friction) & Failures Distribution Chart

FrictionBinsSelection

 # of Failures

 FailureRates

*No-Faults Seeded

Total Experiments = 100

Total Failures = 30

13
12

25

17
17

16

2

6

11

3

7

1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

0.1 0.2 0.4 0.6 0.8 1

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Friction Values

Randomly Generated Environmental Situations (Friction) & Failures Distribution Chart

FrictionBinsSelection

 # of Failures

 FailureRates

*No-Faults Seeded

Total Experiments = 100

Total Failures = 30

16 16

21 21

16

10

4
3

7
8

3

5

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Precipitation Deposits Values

SitCov-based Generated Environmental Situations (Precipitation Deposits) & Failures Distribution

Chart PrecipitationDepositsSelection

 # of Failures

 FailureRates

*No-Faults Seeded

Total Experiments = 100

Total Failures = 30

16 16

21 21

16

10
10

8

12

11

9 8

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Precipitation Deposits Values

SitCov-based Generated Environmental Situations (Precipitation Deposits) & Failures Distribution

Chart PrecipitationDepositsSelection

 # of Failures

 FailureRates

*Fault #1 Seeded

Total Experiments = 100

Total Failures = 58

Fig. 13. SitCov-based Precipitation Deposits situation generation & failure distributions, no

faults seeded.

4.3 Summary of Our Results

With respect to RQ1, our experiments suggest that the fault revealing capabilities of

our SitCov AV-testing framework vs random generation is more or less the same.

With respect to RQ2, the results produced by the SitCov AV-testing framework are

much more convincing than random situation generation, because the results produced

by the SitCov AV-testing framework provide additional confidence in the failure rates

as the situation coverage-based situation generation of our SitCov AV-testing frame-

work make sure that the situation hyperspace is efficiently covered while also making

sure that in case of repetitions of situations, we have an even distribution of repetitions

rather than highly varying distributions of situations as seen for random situation gen-

eration.

5 Conclusion & Future Work

In this paper we have developed a novel situation coverage based (SitCov) AV-testing

framework which uses situation hyperspace, a derivative of an ontology that we devel-

oped, to automatically generate test suites according to a situation coverage criterion to

test AVs for their V&V and safety assurance.

This paper contributes not only theoretically but we have also released our code

publicly so researchers can get a head start if they are looking to work in this direction.

Our framework has shown that it can find seeded faults and highlight situations with

high failure rates and this framework also provides us with confidence in the failure

rates of situations it generates due to the even distributions of generating situations, due

to the novel mechanism of situation coverage-based situation generation mechanism

we have developed for our SitCov AV-testing framework. The developed SitCov AV-

testing framework treats AV autonomous driving algorithm as a black-box, hence bat-

tling against the AV-IP problem, while testing the AV thoroughly and evenly in all

kinds of situations, so that we would have high confidence in the results provided by

our SitCov AV-testing framework.

For the future work, we have made our SitCov AV-testing framework really expand-

able such that many more axis can be added in the situation hyperspace and a lot more

dynamic obstacles can be added in the simulation runs instead of just V2V interactions

that is currently being done. So, we recommend that the situation hyperspace be ex-

panded more with additional axis, e.g., adding different kinds of roads, adding

16 16

21 21

16

10

9

6

9

13

7
7

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Precipitation Deposits Values

SitCov-based Generated Environmental Situations (Precipitation Deposits) & Failures Distribution

Chart PrecipitationDepositsSelection

 # of Failures

 FailureRates

*Fault #2 Seeded

Total Experiments = 100

Total Failures = 51

16 16

21 21

16

10

5
4

8
9

4

7

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

F
a

ilu
re

 R
a
te

N
u

m
b

e
r

o
f

T
im

es
 E

v
e
n

t
E

x
e
cu

te
d

Precipitation Deposits Values

SitCov-based Generated Environmental Situations (Precipitation Deposits) & Failures Distribution

Chart PrecipitationDepositsSelection

 # of Failures

 FailureRates

*Fault #3 Seeded

Total Experiments = 100

Total Failures = 37

diverging and merging collisions instead of only cross-collisions with OV, adding pe-

destrians and cyclists, etc.

We also recommend making use of the failure rate of situations and using that infor-

mation to skew the generation of next batch of situations in the direction of situation

elements that were causing more failure (high failure rate), which can be done using

the same mechanism we have developed for doing situation coverage-based situation

generation for our SitCov AV-testing framework. Similarly, machine learning can also

be added in our SitCov AV-testing framework to generate more interesting situations,

i.e., edge-cases, by learning the patterns of combinations of environmental conditions

and intersection situations that cause the highest failure rates in the results of our SitCov

AV-testing framework test-cases.

Acknowledgements. The research presented in this paper has been funded by European

Union's EU Framework Programme for Research and Innovation Horizon 2020 under

Grant Agreement No. 812.788.

References

1. Tahir, Z., Alexander, R.: Coverage based testing for V&V and Safety Assurance of Self-

driving Autonomous Vehicles: A Systematic Literature Review, 2020 IEEE International

Conference On Artificial Intelligence Testing (AITest), 2020, pp. 23-30, doi:

10.1109/AITEST49225.2020.00011.

2. International Organization for Standardization, ISO/PAS 21448:2019 Road vehicles —

Safety of the intended functionality, 2019, https://www.iso.org/standard/70939.

3. International Organization for Standardization, ISO 26262-1:2018 Road vehicles — Func-

tional safety, 2018, https://www.iso.org/standard/68383.

4. Underwriters Laboratories, Presenting the Standard for Safety for the Evaluation of Auton-

omous Vehicles and Other Products, https://ul.org/UL4600.

5. Anthony, C., Lee, R., Kochenderfer, M.J.: Scalable autonomous vehicle safety validation

through dynamic programming and scene decomposition. 2020 IEEE 23rd International

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

6. Klischat M., Althoff, M.: Generating critical test scenarios for automated vehicles with evo-

lutionary algorithms. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019.

7. Chance, G., Ghobrial, A., Lemaignan, S., Pipe, T., Eder, K.: An agency-directed approach

to test generation for simulation-based autonomous vehicle verification. 2020 IEEE Interna-

tional Conference On Artificial Intelligence Testing (AITest). IEEE, 2020.

8. Haq, F.U., Shin, D., Nejati, S., Briand, L.: Comparing offline and online testing of deep

neural networks: An autonomous car case study. 2020 IEEE 13th International Conference

on Software Testing, Validation and Verification (ICST). IEEE, 2020.

9. Society of Automotive Engineers, SAE J-3016 international report at https://www.sae.org.

10. MathWorks Automated Driving Toolbox, available at https://uk.mathworks.com/prod-

ucts/automated-driving.html.

11. CarMaker: Virtual testing of automobiles and light-duty vehicles, available at https://ipg-

automotive.com/products-services/simulation-software/carmaker/.

12. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban

driving simulator. Conference on robot learning. PMLR, 2017.

13. Kitchenham, B.A., et al.: Refining the systematic literature review process—two participant-

observer case studies. Empirical Software Engineering 15 (6) (2010) 618–653.

14. Alexander R., Hawkins, H., Rae, D.: Situation coverage – a coverage criterion for testing

autonomous robots pp. 1–20, 2015.

15. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and Substantiating

the Terms Scene, Situation, and Scenario for Automated Driving. IEEE Conf. Intell. Transp.

Syst. Proceedings, ITSC, vol. 2015-Octob, pp. 982–988, 2015.

16. Tahir, Z.: Situation hyperspace — using a simulated world to obtain situation coverage for

AV safety assurance. Available at https://assuringautonomy.medium.com/situation-hyper-

space-using-a-simulated-world-to-obtain-situation-coverage-for-av-safety-assurance-

39fa5ea203cd.

17. Krzysztof, C.: Operational World Model Ontology for Automated Driving Systems - Part 1:

Road Structure. 10.13140/RG.2.2.15521.30568.

18. Thorn, E., Kimmel, S., Chaka, M.: A Framework for Automated Driving System Testable

Cases and Scenarios. National Highway Traffic Safety Administration USA, 2018.

19. Philippe, N.: Safety-critical scenarios and virtual testing procedures for automated cars at

road intersections. Diss. Loughborough University, 2018.

20. Tahir, Z.: Situation Coverage-based AV-Testing Framework in Carla, available at

https://github.com/zaidtahirbutt/Situation-Coverage-based-AV-Testing-Framework-in-

CARLA.

21. International Organization for Standardization, ISO 22737:2021, Intelligent transport sys-

tems — Low-speed automated driving (LSAD) systems for predefined routes — Perfor-

mance requirements, system requirements and performance test procedures. Available at

https://www.iso.org/standard/73767.

22. Xueyi, Z., Alexander, R., McDermid, J.: Testing method for multi-uav conflict resolution

using agent-based simulation and multi-objective search. Journal of Aerospace Information

Systems 13.5 (2016): 191-203.

23. Krzysztof, C.: Operational World Model Ontology for Automated Driving Systems - Part 2:

Road Users, Animals, Other Obstacles, and Environmental Conditions.

10.13140/RG.2.2.11327.00165.

24. Krzysztof, C.: Operational Design Domain for Automated Driving Systems - Taxonomy of

Basic Terms. http://dx.doi.org/10.13140/RG.2.2.18037.88803 .

25. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Com-

put. Surv. 29, 4 (Dec. 1997), 366–427. DOI:https://doi.org/10.1145/267580.267590

26. Shwartz, S.S., Shammah, S., Shashua, A.: On a Formal Model of Safe and Scalable Self-

driving Cars. Available at: https://arxiv.org/abs/1708.06374.

27. ScenarioRunner for CARLA available at https://github.com/carla-simulator/scenario_run-

ner.

28. Jonathan, H., et al.: Speed/accuracy trade-offs for modern convolutional object detectors.

Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

29. LaValle, S.M.: Planning Algorithms, Cambridge University Press, 2006.

30. COCO dataset. Available at https://cocodataset.org/.

31. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,

M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision appli-

cations. ArXiv preprint arXiv:1704.04861 (2017).

32. Kinsley, H.: Object detection with Tensorflow - Self Driving Cars p.17. Available at

https://www.youtube.com/watch?v=UAXulqzn5Ps.

33. Babikian, A.A.: Automated generation of test scenario models for the system-level safety

assurance of autonomous vehicles. In Proceedings of the 23rd ACM/IEEE MODELS, 2020.

