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Abstract—In maritime situational awareness, the Automatic
Identification System (AIS) is a vital source of information.
Recent work has explored the fusion of AIS information and
exteroceptive measurements to improve maritime target tracking
performance, also for extended object tracking. However, in
extended object tracking, the discrepancy between the center of
the ship and the position reported by the AIS system is no longer
negligible and is a source of systemic bias, which can degrade
tracking performance. In this paper, we introduce a method for
estimating this discrepancy based on AIS information and the
estimation provided by the Gaussian process target model from
the exteroceptive sensor data. We use this method combined with
an extended object Poisson multi-Bernoulli mixture (PMBM)
filter to perform multiple extended object tracking. We also
introduce a specific method for initialization of targets using AIS
measurements in this filter. We validate the proposed method
with LiDAR and AIS data, collected from an inland waterway in
Belgium. The results show that compensating for the bias in this
manner results in better tracking performance, primarily due to
better initialization of new targets.

Index Terms—Automatic Identification System (AIS), Bayesian
estimation, Extended targets, Data fusion, Multi-object tracking

I. INTRODUCTION

Object tracking is an essential capability for a situational
awareness system. It entails inferring information regarding
objects of interest from noisy sensor data. Tracking mul-
tiple objects adds further complexity due to uncertainty in
the association of measurements and number of objects [1].
Furthermore, if an object generates multiple measurements,
extended object tracking methods can be used to estimate
the shape and size, the extent, of the object in addition
to its kinematic states. This provides more information, but
necessitates more complex target models, further increasing
the complexity of the problem [2]. To aid in tackling this
complexity, one approach is to utilize information from target-
provided measurements. In the field of waterborne transport,
such target-provided data already exist in the form of the
Automatic Identification System (AIS), a crucial system for
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vessel navigation. It allows the vessels to exchange informa-
tion with other vessels and nearby shore stations, to increase
the situational awareness of the crew, and help them avoid
collisions with other vessels. This system is widespread and
mandated by law for ships above a certain size (300 gross
tonnage) and all passenger ships [3]. Therefore, it has a key
role to play in tracking such ships [4]. AIS has also been used
for collision avoidance systems for trials of an autonomous
surface vehicle (ASV) [5]. The data provided by AIS can
be fused with information from other sensors to perform
multi-object tracking and recent studies have shown that this
enhances tracking performance across various multi-object
tracking frameworks [6]–[9]. Recent work has demonstrated
how to incorporate target-provided measurements in multiple
extended object tracking [10] using an extended object Poisson
multi-Bernoulli mixture (PMBM) filter with a Gaussian pro-
cess (GP) target model [11]. In this work, the AIS message
is also used to estimate the size and shape of an object in
addition to the kinematic states of position and velocity, which
improved the extent estimation and tracking performance.
However, fusing AIS information in the context of extended
object tracking gives rise to additional challenges. One such
challenge is the fact that in reality, the reported position in the
AIS message does not necessarily correspond to the center
of the ship. At sea, this minor discrepancy is not an issue,
since the distances between vessels are generally quite large.
However, when a ship is close enough for extended object
tracking to be relevant, this discrepancy should be taken into
account, especially for larger vessels. A specific environment
where this is relevant is inland waterways, which are relatively
narrow compared to the size of the vessels, meaning that
vessels will pass close to one another. In this paper, we build
on the work in [10] to develop a multiple extended object
tracking method using AIS and LiDAR data and use it to
track large (CEMT Class II or above [12]) vessels in an
inland waterway, with data collected near the Albert Canal
in Belgium. The main contributions compared to [10] include
the estimation of the offset between the reported AIS position
and the estimated centroid of the extended object, a more
specific initialization procedure for AIS measurements, and
the demonstration of the method in a dataset that combines
LiDAR data with real AIS data. The paper is organized as
follows; in Section II we present the relevant background
theory, in Section III we present the specific method and our
contributions and in Section IV we present the results on the
gathered data, compared to the benchmark methods.



II. BACKGROUND

In this section, we present the extent model used in this
work, the GP model [13], then we give a summary of how
the AIS data can be incorporated into this model and how it
is combined in the PMBM framework, as described in [10].

A. Extended Object Tracking

Extended object tracking methods allow a given target to
generate a varying number of measurements. This fact can be
exploited to infer information about its shape and size from
the spatial distribution of those measurements. An extended
object tracking method requires a model for this spatial
distribution. One common model is the random hypersurface
model, which models the extent as a generic star-convex shape
by parameterizing its contour [2]. This approach, in which
the contour is modeled, naturally lends itself to representing
contour-generated measurements, such as those obtained from
LiDAR. To perform joint estimation of the extent and state of
the target the following augmented state space vector can be
defined

xk =
[
xck ϕk (x∗

k) xfk
]T
, (1)

where xck is the position of the centroid of the target from
which the extent is defined, ϕk is the heading of the target,
and x∗

k are any additional kinematic states of the target. In
our case, these are the velocity in each direction in 2D ẋc,
and the angular velocity ϕ̇. xfk is the parametrization of the
contour of the extent. Using this state space vector, a generic
measurement equation for this method can be written as

zlk = xck + p(θlk)f(θ
l
k) + ηlk

p(θlk) =

[
cos θlk
sin θlk

]
.

(2)

Where zlk is the measurement l at time k, θlk is the corre-
sponding angle of the origin of the measurement of the target
contour and f(θlk) is the radius function which parameterizes
the extent. This radius function can be represented in a
variety of ways, in this work, we use the GP method [13],
for which a process model and a measurement model is
defined. Furthermore, to handle the case when measurements
are generated from the interior of the contour, a scaling factor
can be used to model the distribution of the measurements
over the surface. This was first presented in [14]. In the paper
presenting the GP target model [13], this scaling factor was
approximated as a Gaussian random variable according to

sk,l ∼ N (µs, σ
2
s). (3)

For the specific case where the measurement source is uni-
formly distributed over the surface given by the star-convex
shape, it was shown that µs = 2

3 and σ2
s = 1

18 . A measurement
model for the GP target model applying this scaling factor was
presented in [13]. Using this, we can define the measurement

model used for the exteroceptive sensor measurements in this
paper as follows.

zlk = hlk(xk) + ηlk, ηlk ∼ N (0, R̃l
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(4)
Here R is the inherent measurement noise of the exteroceptive
sensor, θlk is defined either in the global frame θlk

(G) or the
local target frame θlk

(L) as

θlk
(L)

(xck, ϕk) = θlk
(G)

(xck)− ϕk

θlk
(G)

(xck) = ∠ (zk,l − xck)
(5)

and Hf and Rf are found by Gaussian process regression,
which in turn is defined by a specific covariance function. The
covariance function can be defined to encode axial symmetry,
for instance, along the longitudinal axis. For more details
and exact expressions, see [11]. This measurement model is
non-linear and therefore an extended Kalman filter is used to
perform the state estimation. Furthermore, iterations can be
added to improve the linearization which turns the problem
into a Gauss-Newton optimization problem, which allows
additional criteria to be defined which avoids convergence to
local optima [11].

B. AIS Data in Extended Object Tracking

The AIS protocol defines different message types for car-
rying different types of information. Kinematic data, i.e.,
position, course over ground, speed, and heading, are reported
in a position report that is regularly broadcast by all ships
with AIS transmitters (message type 1). The period between
transmission is at most 10 s for vessels moving under their own
power [15, Annex 1]. We can define a measurement equation
for the contents of this message as

pAIS = xc + ηp ηp,∼ N (0, σ2
pI2)

|vAIS |R
(
∠vAIS

)
= ẋc + ηv ηv,∼ N (0,Rv)

ψAIS = ϕ+ ηψ, ηψ ∼ N (0, σ2
ψ)

(6)

where pAIS is the reported position with corresponding mea-
surement noise standard deviation σp. |vAIS | is the reported
speed, ∠vAIS is the reported course and Rv is a Cartesian
conversion of the polar measurement noise matrix given by
the angular and radial standard deviation σ∠v and σ|v| respec-
tively. ψAIS is the reported heading with the corresponding
measurement noise standard deviation σψ . Ship dimensions
are instead reported in a different message containing static
ship and voyage-related data (message type 5) [15, Annex 8].
The data contained in this message is self-reported, i.e., it has
to be filled in manually by the ship’s crew and it also has to be
updated if any information changes. To define a measurement



model for the dimensions, we note that the length and width
of the ship are related to the radius function f(θ) at specific
fixed angles corresponding to the length and width [10].

LAIS = f(0) + f(π)

WAIS = f(π/2) + f(3π/2).
(7)

Utilizing the GP target model, this expression can be written
as

LAIS =
(
Hf (0) +Hf (π)

)
xf +wL

WAIS =

(
Hf

(π
2

)
+Hf

(
3π

2

))
xf +wW

wL ∼ N (0,RL), wW ∼ N (0,RW ).

(8)

The estimated measurement noise also has a component for
GP regression, which is given by

RL = Rf (0) +Rf (π) + σ2
d

RW = Rf
(π
2

)
+Rf

(
3π

2

)
+ σ2

d,
(9)

where σd is the measurement noise for the dimensions re-
ported by the AIS message. The combined measurement model
matrix for an AIS measurement can be written as

HAIS =

[
Hkin 0
0 Hd

]
Hkin = diag[1, 1, 1, 1, 1]

Hd =

[
Hf (0) +Hf (π)

Hf
(
π
2

)
+Hf

(
3π
2

)] .
(10)

The combined measurement noise matrix RAIS can be con-
structed by combining the different measurement noise matri-
ces in a block diagonal fashion.

C. AIS Data in the PMBM Filter

The PMBM filter is a multi-object filter that utilizes a
Poisson point process (PPP) to model undetected targets and
a multi-Bernoulli mixture (MBM) to model detected targets.
A PMBM density is fully parametrized by the following
parameters

Du
k , {w

j
k, {r

j,i
k , (f

j,i
k )}i∈Ik|k′}j∈Jk|k′ . (11)

Where Du
k is the intensity function of the PPP for the unknown

targets. The Bernoulli modeling target i is represented by the
probability density f j,ik , and a parameter r that represents the
existence probability of the target. The components in the
multi-Bernoulli mixture are represented by an index j ∈ J and
correspond to a data association hypothesis with the weight wj

representing the relative likelihood of each hypothesis. For an
extended object, each target is detected with a probability PD

and if detected, generates measurements according to a PPP
with rate λm(x) and a spatial distribution l(ZC |xk). ZC is the
subset of measurements assigned to a specific measurement
cell C, and lC is the likelihood of this assignment. Clutter is
modelled as a PPP with rate λc. Recursions based on these
assumptions are presented in the original paper on the PMBM
filter for extended objects [16] and adapted for a GP target

model in [11]. For the GP model, a single object estimate is
represented by gamma-Gaussian distributions according to

f = N (x; x̂,P)G(α, β). (12)

The Gaussian component is given by the state space vector
defined in the section above, whereas the gamma distribution
provides an estimate of λm(x) governing the cardinality of
the measurement set associated with a target. Recursions are
defined according to

αk|k−1 =
αk−1

ηγ
, βk|k−1 =

βk−1

ηγ

αk = αk|k−1 + |ZC |, βk = βk|k−1 + 1,

(13)

where ηγ is defined as ηγ = 1
1− 1

we

, which means that only
information from the time steps within the window length we
is trusted [17].

We omit the full recursions for the PMBM filter using
the GP target model and refer to [11] or [10] for these. We
instead highlight the part of the recursions that are affected
by the different kinds of measurements. Of the above quanti-
ties, the likelihood of a measurement assignment lC and the
calculation of the individual posterior densities represented by
f j,ik are affected by the choice of measurement model, and
thus whether it is an exteroceptive measurement or a target-
provided measurement. For exteroceptive measurements lC is
given by

lC = PD
Γ(α+ |ZC |)βα

Γ(α)(β + 1)(α+|ZC |)|ZC |!
×

∏
z∈ZC

N (zl; z̄l,Sl),

(14)
where z̄l and Sl are given by the measurement model in (4).
The posterior densities are given by a Kalman filter update
step using the same measurement model for the Gaussian
component and by (13) for the gamma component. For target-
provided measurements, lC is given by

lC = pτ (τ
z|τ)N (zAIS ; z̄AIS ,SAIS), (15)

where z̄AIS and SAIS are given by the measurement model
in (10) and pτ (τz|τ) is the likelihood of the AIS measurement
ID τz being the same as the target ID τ , which is given by

pτ (τ
z|τ) =


PC if τ = τz

1−PC

|V|−1 if τ ̸= τz

0 if τ = 0

, (16)

where PC is the probability of a correct ID and |V| is the
total number of possible IDs. Furthermore, PD and the clutter
rate λc are modified for target-provided measurements, they
are defined to have no impact on the likelihoods by defining

PD =

{
1 if a measurement is received
0 Otherwise

λc = 0.

(17)

For more details on the combination of target-provided and ex-
teroceptive measurements for extended objects in the PMBM
framework, see [10].



III. METHOD

In this section, we present how we estimate the discrepancy
between the reported AIS position and the estimated centroid
as well as how targets are initialized using AIS measurements.

A. Bias Estimate

Recall that the dimensions of a vessel are reported in
a specific AIS message type. The actual structure of this
message also contains information about the location of the
reference point for the reported position on the ship [15, Annex
8]. This is done by reporting four values where A is the
distance from the bow to the reference point, B is the distance
from the stern, C is the distance from the port side and D is
the distance from the starboard side, this means that the length
is given by A + B = LAIS and the width C +D = WAIS .
However, the reference point of the position is not always
available since it is not required for all vessels, and this is
indicated by A = C = 0. This information can be redefined
to a longitudinal and lateral distance in a local target frame
according to

δx =
A+B

2
−A, δy =

C +D

2
− C, (18)

where δx is the longitudinal and δy is the lateral offset from
the center of the ship. A graphical representation of these
variables can be seen in Fig. 1. With a known offset, we can
define a refined expression for the reported AIS position as

pAIS = xc +R(ϕ)

[
δx
δy

]
, (19)

where R(ϕ) is the 2D rotational matrix. The simplest choice
would therefore be to use this expression directly and assume
that the information is correct. However, this relies on the
provided information being reported correctly, if it is provided
at all. Therefore, there is a potential for errors. The other issue
is the fact that the centroid xc is directly affected, which could
affect the estimate of the extent. Therefore, we propose an
alternative approach where we estimate δx and δy as unknown
quantities and as part of the state vector. This can be seen as
a form of bias estimation. Therefore, the new measurement
equation for the reported AIS position is given by (19), and
the Jacobian of this expression is used in the measurement
model matrix HAIS for the AIS update step.

The process model for these offset terms can be defined
from the Wiener process, which is a common process model
for unknown time-varying biases [18], which defines the
process model matrices as follows

Fδ = I, Qδ = σ2
δT I, (20)

where σδ is the variance and T is the sampling time. These
matrices are then used as an augmentation of the process
model of the target model. The practical effect of this is
that as the AIS measurements arrive, the centroid of the ship
that is used to define the extent will be estimated using the
exteroceptive sensor measurements and the estimated offset
will be estimated by the difference between the reported AIS

Fig. 1. A visualization of the definition of the AIS message content A, B,
C, and D, along with the definition of δx and δy

position and the estimated centroid. Therefore, it should be
expected to converge after a few AIS measurements have
been received. If the reference point of the reported position
is available via AIS, this should also be used, in this work
we use it as a prior to initialize the estimate, which should
allow the bias to converge faster. We should also note that
by estimating this bias, we could potentially capture other
sources of systemic biases. One such source could be errors
in time synchronization between the AIS and exteroceptive
sensor measurements.

B. Initialization for Multi-Object Tracking

The multi-object tracking method is similar to the one
presented in [10]. However, in this work, we want to study
in more detail the case where AIS measurements are received
before the exteroceptive measurements, which will be the
case in reality. Therefore, the AIS measurement will be used
to initialize a track, which is preferable since it provides
more information. It should be noted that while the heading
can be reported via AIS, no ship that we observed during
data gathering reported this information, and thus we can
assume that it is fairly rare. However, the course is always
reported and for initialization, we suggest that it be used as a
measurement for the heading. If the antenna offset is available
from the AIS message, we augment the AIS measurement
with a direct measurement of δx and δy, this will provide
an initial guess of the value which can be refined when



exteroceptive measurements are received. Therefore, we define
an augmentation of (6), which is used when initializing a target

∠vAIS = ϕ+ η∠v, η∠v ∼ N (0, σ2
∠v)

δxAIS = δx+ ηδ0, ηδ0 ∼ N (0, σ2
d)

δyAIS = δy + ηδ0, ηδ0 ∼ N (0, σ2
d).

(21)

We also use the AIS-reported width and length to explicitly
define the extent of the newly born target. We only do this if
a new target is detected by an AIS measurement, i.e., for AIS
measurements associated with the PPP component. However,
this is only used for the calculation of the posterior density, and
not for the calculation of lC since the relative likelihood of this
augmented measurement would not be directly comparable
with hypotheses where the AIS measurement is associated
with a Bernoulli component.

Related to this, we will often have cases where an AIS
measurement initializes a target beyond the range of the
exteroceptive sensor. If this happens, subsequent updates using
exteroceptive sensor measurements will lower the existence
probability of the target since it will be counted as a misde-
tection until the target is in range of the sensor. To mitigate
this, we can redefine the probability of detection PD based on
the distance of an object to the sensor. However, we need to
consider that a measurement is generated along the contour
and that an object is in range of a sensor when a part of the
contour is in range, so we need to calculate the distance to
the closest point. To do this, we calculate the distance to each
sampling point on the extent and then take the closest distance,
i.e.,

dobj(x) = min(||xc +R(ϕ+Θf )xf ||). (22)

Here, Θf is the vector of test angles, the angles at which the
radius of the contour is given by the contents of the vector xf .
This allows us to calculate a range dependent value of PD for
each component of the PMBM which we do according to

PD(x) =


PD dobj < Rex

PD(1− dobj(x)−Rex

δRex
) 0 < dobj −Rex < δRex

0 otherwise

.

(23)
Here Rex is the stated range of the exteroceptive sensor and
we use the linearily descending function defined by δRex to
handle eventual returns beyond that. The gamma parameters
will also decrease once a target has been detected due to the
prediction step in the recursions defined by (13). Therefore, the
parameter that governs this prediction should be set to ηγ = 1
before the exteroceptive sensor detects the target to prevent
the expected number of measurements from decreasing.

IV. EXPERIMENTAL DATA

In this section, we present results where LiDAR and AIS
data was gathered using the sensor box described in [19],
which is an upgraded version of [20]. We compare three
different PMBM filters using the GP target model, one where
we do not utilize any AIS information, corresponding to [11],
denoted GP, one where we do not consider the offset in the

AIS estimate, corresponding to [10], denoted GP+AIS, and the
proposed method, denoted GP+AIS+bias.

A. Methodology

The data was gathered by placing the sensor box on the
shore of the Albert Canal, a large inland waterway in Belgium,
and scanning the ships that passed by. The mechanical LiDAR
had a maximum detection range of 150 m (which means that
Rex = 150 m, and δRex = 25 m) and it was spinning at a
frequency of 10 Hz. AIS data was gathered with an external
AIS receiver. Land returns were removed as part of manual
post-processing. To obtain ground truth data, the data was
labeled manually by inspecting the LiDAR scans to identify
the extent of the ships, the AIS data for speed and course was
interpolated to attain the velocity, and the course was also used
as a proxy for the heading. This allows us to reconstruct the
shape of the hull so that it can be used to get a measure of
the quality of the extent estimate. From the data set, we select
two scenarios for further study. One is a scenario with a single
ship, and the other is two ships meeting each other in front of
the sensor.

B. Metrics

We use the same metrics as in [11], that is, intersection-
over-union and heading error to compare the extent estimation
and the GOSPA metric, which aggregates localization error,
the number of missing targets, and the number of false targets
into one metric, to compare multi-object tracking performance
[21]. The state variables used in the GOSPA metric are the
position variables for the centroid, an estimate is reported if
its probability of existence is higher than 0.5, and parameters
for the GOSPA metric were cut off c = 40 and power p = 2.

C. Parameters

The parameters are defined as follows, we use σc = 0.01√
m2s−3 as the noise parameter for the constant velocity

model, σϕ = 0.0001
√
rad2s−3 as noise for the constant

angular velocity model, and σr = 0.1 m for the measurement
noise. We use 20 for the length of the gamma prediction
window. We use 16 test angles to parametrize the extent
and the hyperparameters are σf = 1 m, σr = 4 m, σn =
0.01 m, l = π/6 rad and the forgetting factor ηf = 0.005.
The maximum amount of IEKF iterations is 50. For the AIS
measurement noise, we use σp = 1 m, σ∠v = 0.001 rad,
σ|v| = 0.1 m/s, σϕ = 0.001 rad and σd = 0.5 m. The process
noise for the offset estimate is σδ = 0.001 m. The birth density
is defined with two components at a distance of 200 m from
the sensor at either side of the canal, where the prior heading
and course angle are aligned with the direction of the canal.
The prior speed is assumed to be v0 = 3 m/s and the extent
prior is defined as a rectangle 60 m long and 10 m wide,
with a pointed bow at the front which is 6 m deep. The prior
value of the gamma distribution is α0 = 1000 and β0 = 100.
The initial covariance is defined with the following standard
deviations, the positional components are 30 m, the velocity
components are 0.1 m/s, the heading component is π/4 rad
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TABLE I
MEAN VALUE FOR THE METRICS FOR THE FIRST SCENARIO

Method GP GP+AIS GP+AIS+bias
GOSPA 28.20 30.49 9.98
Loc. Err. 20.94 24.99 8.88
Missed 0.19 0.05 0.05
False 0.26 0.31 0.00
IOU 0.40 0.18 0.51
Heading (rad) 0.14 0.31 0.06

and the angular velocity is π/20 rad/s. The offset estimates
have an initial standard deviation of 30 and 5 m for δx and
δy respectively. The PMBM parameters are chosen as follows,
probability of detection PD = 0.90, probability of survival
PS = 0.999, and clutter rate λc = 20. The gating probability
is set at PG = 0.99, the pruning parameters are 0.01 for the
existence probability, 0.001 for PPP mixture components, and
0.01 for multi-Bernoulli mixture components.

D. Single Target

The mean values of the metrics are presented in Table I.
The evolution of the metrics over time is shown in Fig. 2.
Here, we note that most of the benefit of our proposed method
comes from the initial stages, with no false targets and a better
state estimate. Our method initializes the track earlier and
with the correct dimensions. However, when not compensating
for the offset, the discrepancy between the LiDAR and AIS
measurements results in large errors in the extent estimation

due to large heading errors. When the LiDAR detects the rear
of the ship, these measurements are associated as belonging
to a new target, resulting in a false target, which in turn is not
associated with the AIS measurements. This also contributes
to a poor extent estimate and shows that accounting for the
antenna offset is essential when combining exteroceptive and
AIS measurements in a multiple extended object tracking
framework. LiDAR measurements cease coming from the ves-
sel around timestep 1200, resulting in the target being missed
for those timesteps, but when the next AIS measurement
arrives the ship continues to be tracked, note that the tracking
performance is better when the offset has been estimated.

We can also study how well the methods estimate the length
and width. This is presented in Fig. 3. Note the see-saw pattern
for both the length and width estimates when AIS measure-
ments arrive, which matches with a similar pattern in the IOU
metric. This indicates that the extent model overestimates both
length and width. A significant reason for this is the choice of
the scaling factor s, since the measurements are assumed to be
uniformly distributed across the extent surface. For a LiDAR,
this is not accurate and if the measurements originate more
from the contour, the extent will be overestimated. We can
observe this effect in Fig. 4 by the fact that the measurements
are enclosed by the estimate, showing the conservative nature
of the use of a scaling factor, particularly with fewer mea-
surements. Using AIS measurements mitigates this since exact
dimensions are measured, giving indents in the estimates on
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Fig. 4. Three different representative timesteps visualized for both scenarios with the single target scenario above and the multiple targets below. The ground
truth is shown as the magenta solid line, with the centroid as a dot, or green for the other ship in the multiple target scenario. The estimated extent of our
proposed method is shown as the dashed blue line with a blue dot representing the centroid, along with LiDAR measurements represented by black circles.

either side of the estimated centroid, keeping it smaller than it
otherwise would have been. The width suffers from not only
the scaling factor issue but also the issue of modeling very
elongated shapes using a radial function. The reason for the
use of a scaling factor despite these drawbacks is that it allows
the full point cloud to be used for the state estimation. It also
resulted in much more stable estimates when compared to the
regular contour model, even when measurements from within
the contour were removed.

Regarding the bias, it can be seen to converge quickly, after
receiving a second AIS measurement. However, it does not
converge to a constant value, particularly after timestep 600
when the ship passes the sensor. This is due to the estimated
position of the centroid moving due to the influence of the
target model, which can be seen in Fig. 4. The main contributor
is the choice of the scale factor, which causes the centroid to
be initialized in front of the actual center of the ship. It then
moves rearward when compared to the ground truth, ending
up behind it at the end of the run. Therefore, the centroid of
the estimate does not necessarily correspond to the geometric
centroid of the object, especially if only a part of the object is
visible. Regardless of this variation, this shows that the bias
can be estimated using this technique, but since the centroid
can move, it might not converge to a fixed value.

E. Multiple Targets

The scenario itself can be seen in Fig. 4. Note that the
furthermost vessel from the sensor is not fully occluded during

TABLE II
MEAN VALUE FOR THE METRICS FOR THE SECOND SCENARIO

Method GP GP+AIS GP+AIS+bias
GOSPA 37.71 40.86 16.34
Loc. Err. 23.75 44.39 17.19
Missed 0.33 0.11 0.08
False 0.35 0.22 0.00
IOU 0.33 0.28 0.44
Heading (rad) 0.13 0.38 0.08

the scenario due to the usage of the full 3D point cloud. The
mean values of all the metrics are presented in Table II and
the evolution of the metrics over time is shown in Fig. 5.
The results follow a similar trend as for the single targets, and
again we can note the improved initialization of targets for the
proposed method and the resulting lack of missed and false
targets compared to the other methods, which both produce an
additional estimate for the furthermost vessel from the sensor.
We can also note the impact of clutter from the wake in the
shape of the estimate in Fig. 4 at t = 925, which elongates the
estimate behind the ship.

V. CONCLUSION

In this work, we have presented a method that utilizes
AIS and LiDAR data to perform multiple extended object
tracking on larger (CEMT Class II or above [12]) vessels found
in inland waterways. In particular, we have shown how to
utilize both measurement sources to estimate the bias between
the reported AIS position and the estimated centroid of an
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Fig. 5. Evolution over time for the three methods for selected metrics for multiple ships

extended object, along with how to handle the specific case
when a target is initialized with an AIS measurement. We have
also demonstrated this method on real data, finding a particular
benefit for the proposed method in the initialization of targets.
It should be noted that while LiDAR was used as the sensor in
this work, in principle, it should work with any exteroceptive
sensor. Future work could focus on improving the extent
model to be able to more accurately represent ship shapes,
along with finding a better choice of scale parameter, or a
different manner of handling measurements from within the
contour. It could also be of interest to incorporate smoothing
in this method, since this could remove the see-saw patterns of
corrections when new AIS measurements arrive and distribute
the accumulated error, improving the estimate.
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